研究生: |
宋正心 Song, Jheng-Sin |
---|---|
論文名稱: |
不同農法對北台灣水稻田在耕作與休耕期間動物群聚結構的影響 Effects of different farming practices on rice paddy animal community during cultivation and fallow periods in northern Taiwan |
指導教授: |
郭奇芊
Kuo, Chi-Chien |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 農業生態系 、有機農法 、休耕 、水稻田 |
英文關鍵詞: | agroecosystem, organic agriculture, fallow, paddy field |
DOI URL: | http://doi.org/10.6345/NTNU202001107 |
論文種類: | 學術論文 |
相關次數: | 點閱:258 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來持續有慣行農法與有機農法如何影響台灣無脊椎動物群聚結構的相關研究,但目前尚缺乏對於北台灣農業生態系的深入了解,且過去研究多著重於作物種植時期,對於休耕期間的群聚結構,會如何受到耕作期間施行農法所遺留影響所知甚少。然而休耕的農地能提供許多野生動物棲息和覓食的環境,如宜蘭的水稻田一年僅耕作一次,每年的八月至隔年二月為休耕時期,其湛水的休耕農田常能見到鷸鴴科等候鳥停佇並取食於田間。也因此探討耕作期間不同農法是否會接續影響休耕期間的動物組成和數量,例如能提供候鳥食物來源的無脊椎動物,即變得相當重要。本研究於宜蘭縣員山鄉和三星鄉各選三塊有機與慣行水稻田,共計12塊,採集稻作植株上以及稻田水面下的無脊椎動物,並配合目視記錄如蜻蜓、兩棲類、爬蟲類、鳥類等生物。同時調查各項環境因子,包括水質(水深、水溫、酸鹼值、溶氧量及導電度)、植株高度及田埂植被型態,之後鑑定物種進行動物群聚結構的比較分析,藉此了解不同農法在耕作與休耕期間的影響。
2019年三月至隔年三月共進行9次採樣,共採集無脊椎動物12綱30目144科共32,880隻個體,及記錄脊椎動物4綱9目15科381隻個體。結果顯示整體上有機農田的無脊椎動物物種數(以科的層級表示)及個體數顯著高於慣行農田,其中陸域無脊椎物種數及水生無脊椎個體數同樣以有機農田顯著較高,而農法之間多樣性指數則無顯著差異。陸域物種數及個體數自耕作初期至後期逐漸上升,且以有機農法的上升幅度較大,兩種農法水中無脊椎動物的個體數,則是在耕作後期和休耕初期差異最大,之後的差距隨著休耕時間而變小。群聚組成部分,不同農法並無顯著差異。而農田中的物種數及個體數除與農法相關外,環境中的氣溫、稻株高度、田埂型態、水質以及樣區所在的鄉鎮也各有顯著的影響。結果顯示耕作期間的農法差異對休耕期間無脊椎動物的影響並不特別顯著,兩種農法在冬季的休耕時期均能提供候鳥合適的棲地。
In recent years, several researches have focused on how organic and conventional farming practices differ in affecting invertebrate communities in Taiwan. However, agricultural ecosystems, including rice paddies, in northern Taiwan has rarely been studied; moreover, whether animal communities during the periodic fallow periods also differ between paddies with organic vs. conventional farming practices during the preceding cultivating periods is unclear. In Yilan of northern Taiwan, paddies are left fallow during the winter but are still flooded to prevent colonization of agricultural pests. Such temporary wetlands provide animals, particularly migratory Scolopacidae and Charadriidae shorebirds, foraging habitats; therefore, it is important to study whether abundance and composition of invertebrates differ with legacy of agricultural practices. In this study, three organic and three conventional farmlands were each studied in Yuanshan and Sanxing township of northern Taiwan six times from March 2019 to March 2020, with invertebrates collected from both rice plants and flooded water with sweep nets, and bird and amphibian species identified and number recorded. Environmental factors recorded included ambient temperature, water quality (water depth, water temperature, pH, dissolved oxygen and conductivity), paddy height as well as plant structure of field banks. Invertebrate specimens were identified to family level and biodiversity indices calculated.
A total of 32,880 invertebrates belonging to 12 classes, 30 orders, and 144 families, as well as 381 vertebrates of four classes, nine orders, and 15 families were recorded. In total, significantly higher family richness and abundance of invertebrates were found in organic than conventional fields. Family richness of terrestrial invertebrates and abundance of aquatic invertebrates were also significantly higher in organic than conventional fields. Shannon index and community composition did not show significant differences. Family richness and abundance of terrestrial invertebrates increased with progression of rice cultivation, but with organic fields exhibiting higher increase than conventional fields. Difference in abundance of aquatic invertebrates between farming practices were higher in the late stage of cultivation and early stage of fallowing. Expect for agricultural practices, environmental factors such as temperature, water quality, paddy height and the vegetation of field bank also had significant effect on abundance and richness of invertebrates. Abundance and richness of predators and parasitoids were higher in organic than conventional fields. During the fallow period, abundance and composition of invertebrates did not differ between agricultural practices. Flooded fallow fields with either organic or conventional practices can provide ideal foraging habitats for migratory shorebirds.
Berezina, N.A. (2001) Influence of ambient pH on freshwater invertebrates under experimental conditions. Russian Journal of Ecology 32: 343–351.
Céspedes, V., Pallarés, S., Arribas, P., Millán, A., Velasco, J. (2013) Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. Journal of Insect Physiology 59: 1076-1084.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67.
Cochard, R., Maneepitak, S., Kumar, P. (2014) Aquatic faunal abundance and diversity in relation to synthetic and natural pesticide applications in rice fields of Central Thailand. International Journal of Biodiversity Science, Ecosystem Services & Management 10: 157-173.
Cummins, K. W., Merritt, R. W., Andrade, P. (2005) The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 69-89
Decourtye, A., Devillers, J. (2010) Ecotoxicity of neonicotinoid insecticides to bees. In: Hervé Thany, S. (Ed.), Insect Nicotinic Acetylcholine Receptors. Springer-Verlag, Berlin.
Ferris, H. (2011) Key to Families (and Subfamilies) of Plant and Soil Nematodes. California: University of California, Davis. URL:http://nemaplex.ucdavis.edu/Taxadata/Famkey.htm.
Fujioka, M., Armacost Jr., J. W., Yoshida, H., Maeda, T. (2001) Value of fallow farmlands as summer habitats for waterbirds in a Japanese rural area. Ecological Research 16: 555-567.
Gerlach, J., Samways, M., Pryke, J. (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation 17: 831–850.
Gill, H. K., Garg, H. (2014) Pesticides: Environmental Impacts and Management Strategies, Pesticides - Toxic Aspects. IntechOpen.
Giuliano, D., Cardarelli, E., Bogliani, G. (2018) Grass management intensity affects butterfly and orthopteran diversity on rice field banks. Agriculture, Ecosystems & Environment 267: 147-155.
Han, M. S., Nam, H. K., Kang, K. K., Kim, M., Na, Y. E., Kim, H. R., Kim, M. H. (2013) Characteristics of benthic invertebrates in organic and conventional paddy field. Korean Journal of Environmental Agriculture, 32: 17-23.
Henneron, L., Bernard, L., Hedde, M., Pelosi, C., Villenave, C., Chenu, C., Bertrand, M., Girardin, C., Blanchart, E. (2014) Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development 35: 169-181.
Hole, D. G., Perkins, A. J., Wilson, J. T., Alexander, I. H., Grice, P. V., Evans, A. D. (2005) Does organic farming benefit biodiversity? Biological Conservation 122: 113-130.
Ibáñez, C., Curcó, A., Riera, X., Ripoll, I., Sánchez, C. (2010) Influence on birds of rice field management practices during the growing season: a review and an experiment. Waterbirds, 33(sp1): 167-180.
Kobashi, K., Harada, T., Adachi, Y., Mori, M., Ihara, M., Hayasaka, D. (2017) Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicology and Environmental Safety 138: 122-129.
Katayama, N., Osada, Y., Mashiko, M., Baba, Y. G., Tanaka, K., Kusumoto, Y., Okubo, S., Ikeda, H., Natuhara, Y. (2019) Organic farming and associated management practices benefit multiple wildlife taxa: A largescale field study in rice paddy landscapes. Journal of Applied Ecology 56: 1970-1981.
Katayama, N., Osawa, T., Amano, T., Kusumoto, Y. (2015) Are both agricultural intensification and farmland abandonment threats to biodiversity? A test with bird communities in paddy-dominated landscapes. Agriculture, Ecosystems & Environment 214: 21-30.
Kasahara, S., Morimoto, G., Kitamura, W., Imanishi, S., Azuma, N. (2020) Rice fields along the East Asian-Australasian flyway are important habitats for an inland wader’s migration. Scientific Reports 10, 4118.
Kazemi, H., Klug, H., Kamkar, B. (2018) New services and roles of biodiversity in modern agroecosystems: A review. Ecological Indicators 93: 1126-1135.
Kim, M. H., Choe, L. J., Han, M. S., Choi, S. K., Na, Y. E., Kang, K. K., Eo, J. (2016) Effects of conventional and organic farming on ground-dwelling invertebrates in paddy levees. Korean Journal of Organic Agriculture, 24, 539–556.
Lawler, S. P. (2001) Rice fields as temporary wetlands: a review. Israel Journal of Zoology, 47: 513-528.
Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., Moreno, C. R. (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics 40: 573-592.
Li, X., Liu, Y., Duan, M., Yu, Z., Axmacher, J. C. (2018) Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agriculture, Ecosystems & Environment 264: 54-62.
Maitland P. S., Morgan N. C. (1997) Conservation Management of Freshwater Habitats. Lakes, Rivers and Wetlands. Chapman & Hall, London.
Malaja, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., Schäfer, R. B. (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences 111: 9549-9554.
Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., Liber, K. (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International 74: 291-303.
Rizo-Patrón V., F., Kumar, A., McCoy Colton, M. B., Springer, M., Trama, F. A. (2013) Macroinvertebrate communities as bioindicators of water quality in conventional and organic irrigated rice fields in Guanacaste, Costa Rica. Ecological Indicators 29: 68-78.
Shultz, J. W. (2018) A guide to the identification of the terrestrial Isopoda of Maryland, U.S.A. (Crustacea). ZooKeys 801: 207-228.
Takada, M. B., Takagi, S., Iwabuchi, S., Mineta, T., Washitani, I. (2014) Comparison of generalist predators in winter-flooded and conventionally managed rice paddies and identification of their limiting factors. SpringerPlus 3: 418.
Toffoli, R., Rughetti, M. (2017) Bat activity in rice paddies: Organic and conventional farms compared to unmanaged habitat. Agriculture, Ecosystems & Environment 249: 123-129.
Triplehorn, C. A., and N. F. Johnson. (2005) Borror and DeLong's introduction to the study of insects, 7th ed. Belmont , California: Thomson Brooks/Cole.
van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., Chase, J. M. (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368: 417-420.
Yamamuro, M., Komuro, T., Kamiya, H., Kato, T., Hasegawa, H., Kameda, Y. (2019) Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366: 620-623.
呂立中 (2019)。建物擴張與棲地管理對宜蘭休耕水稻田鳥類多樣性及棲地偏好的影響。國立臺灣大學森林環境暨資源學研究所碩士論文。
初 建、林美珠、黃貞華、林浩潭 (2007)。雲林地區水田灌溉水系水中農藥殘留監測。植物保護學會會刊 49: 245-257。
林慶元、洪士程、徐保雄、施錫彬、陳治官、黃益田、劉清和、劉達修、蔣永正、蔣慕琰、鄭清煥、羅幹成 (2007)。植物保護圖鑑系列8-水稻保護。臺北市:行政院農業委員會動植物防檢局。
范美玲 (2016)。台灣東部水稻田無脊椎動物多樣性與指標物種研究。國立東華大學自然資源與環境學系博士論文。
倪旻萱 (2019)。宜蘭水稻田紅冠水雞和白腹秧雞與農耕地景的交互關係。國立臺灣大學生態學與演化生物學研究所碩士論文。
孫偉哲 (2020)。慣行與永續農法對水稻田節肢動物多樣性之影響。國立中興大學昆蟲學系碩士論文。
陳文德 (2011)。台灣淡水貝類。屏東:國立海洋生物博物館。
陳宣汶 (2018)。以生態系服務觀點探討氣候變遷下水稻田的永續策略-評估水稻田生態系生物多樣性網絡之生態功能。科技部補助專題研究計畫成果報告。
黃守宏、林芷伶、黃玉媛、宋一鑫 (2018)。有機與慣行水稻田節肢動物之生物量調查。嘉大農林學報15: 67-82。
廖勖凱 (2016)。水梯田水棲昆蟲群聚結構與水生植物密度關係-以新北市貢寮區為例。臺北市立大學地球環境暨生物資源學系環境教育與資源碩士班碩士論文。
賴亦德、陳俊宏 (2018)。台灣常見蚯蚓、蛭類圖鑑。新北:遠足文化。
賴家欣 (2012)。宜蘭地區冬季收割稻田的水鳥分布及其與環境之關係。國立臺 南大學生態科學與技術學系環境生態碩士班碩士論文。
羅英元 (2017)。臺灣常見蜘蛛科級檢索表。南投:行政院農業委員會特有生物研究保育中心。