簡易檢索 / 詳目顯示

研究生: 許欽幃
Hsu, Chin-Wei
論文名稱: 以垂直跳動作推估下肢最大肌力
Estimation of maximal lower limb muscle strength by vertical jumping
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 翁梓林
Won, Tzu-lin
王令儀
Wang, li-I
相子元
Shiang, Tzyy-Yuang
口試日期: 2022/08/04
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 50
中文關鍵詞: 重量訓練垂直跳運動表現推估模型
英文關鍵詞: resistance training, vertical jump, athletic performance, predictive model
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201741
論文種類: 學術論文
相關次數: 點閱:228下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:肌肉力量是賽場上的重要身體能力,傳統會以深蹲1RM重量作為檢測下肢最大肌力進步的指標。隨科技發展各類儀器也被用於檢測中,雖能得到更多力量相關表現參數,但仍無法解決費時且易受限於器材的缺點,因此似乎需要找到一個更為方便、準確的最大肌力檢測方式。目的:以慣性感測器(Inertial Measurement Unit, IMU)蒐集垂直跳躍動作時的加速度,並將其與測力板之地面反作用力訊號界定為各項運動表現特徵參數,以發展下肢最大肌力迴歸方程式。方法:招募13名有重量訓練經驗之健康受試者,將慣性感測器配戴於受試者薦椎,請其在測力板上進行各3次最大努力的反向跳 (Counter Movement Jump, CMJ) 及下蹲跳 (Squat Jump, SJ) ,擷取資料經濾波後將訊號界定為直接、間接參數,以皮爾森積差相關係數表示各參數與實際最大肌力的相關性,再將各參數以逐步迴歸分析,發展下肢最大肌力迴歸方程式。以成對樣本T檢定分析實際值和推估值之間的誤差,並找出較適合推估下肢肌力的跳躍模式。結果:以測力板之CMJ、SJ力量特徵參數推估全體受試者之下肢最大肌力誤差分別約為9~10及13~14公斤、以IMU推估之誤差分別約為11~12及17~18公斤。以測力板之CMJ、SJ運動表現特徵參數推估下肢最大肌力介於1~2倍自身體重之受試者其誤差約為2~3及6公斤,而用IMU僅能以CMJ推估,誤差為4~5公斤。下肢最大肌力於2倍自身體重以上之受試者僅能以測力板之SJ峰值功率推估,誤差約在4公斤。結論:測力板及IMU均能作為推估下肢最大肌力之工具,下肢最大肌力介於1~2倍自身體重之族群適合以CMJ推估,下肢最大肌力於2倍自身體重以上之族群適合以SJ推估。

    Muscle strength is an important physical ability on the sports field. Traditionally, the 1RM barbell squat test is used as an indicator to detect the maximum muscle strength improvement of the lower limbs. With the development of science and technology, various instruments have also been used in testing. Although more strength-related performance parameters can be obtained, it still cannot solve the shortcomings of time-consuming and easily limited by equipment. Therefore, it seems that a more convenient and accurate maximal muscle mass is needed to be found. force detection method Purpose: Collect the acceleration during vertical jumping with inertial sensors (IMU) and the ground reaction force signal of the force plate, then define it as the sport-related performance parameters, to develop the maximal muscle strength regression equation of the lower limbs.. Method: 13 healthy subjects with weight training experience were recruited, the inertial sensor was worn on the subject's sacrum, and they were asked to perform 3 counter movement jumps (CMJ) and squat jump (SJ) with maximum effort on the force plate, the acquired data is filtered and the signal is defined as direct and indirect parameters, the correlation coefficient of Pearson product difference is used to represent the correlation between each parameter and the actual maximum muscle strength, then each parameter was analyzed by stepwise regression, and the regression equation of maximal muscle strength of lower extremity was developed. The error between the actual value and the estimated value was analyzed by paired sample T test, and find out which jumping pattern was more suitable for estimating maximum muscle strength of lower limb. Results: The CMJ and SJ characteristic parameters of force plate were used to estimate the maximum muscle strength of lower limb of all subjects with an error of about 9-10 kg and 13-14 kg, respectively, and the estimated error of the IMU was about 11-12 and 17-18kg. Using the CMJ and SJ characteristic parameters of the force plate to estimate subjects whose maximum muscle strength of the lower limbs between 1- 2 times their body weight, the error is about 2 to 3 and 6 kg. while using IMU can only be estimated by the CMJ. The error is 4~5 kg. Subjects whose maximal lower limb muscle strength is more than 2 times their body weight can only be estimated by the SJ peak power of the force plate, with an error about 4 kg. Conclusion: Both force plates and IMU can be used as tools to estimate the maximum muscle strength of the lower limbs. The group whose maximum muscle strength of the lower limbs is between 1 - 2 times their own body weight is suitable for estimating by CMJ. The group whose maximal lower limb muscle strength is more than 2 times their body weight is suitable for estimating by SJ

    摘要Ⅱ AbstractⅢ 目次V 表次ⅥI 圖次ⅥII 第壹章 緒論1 第一節 前言1 第二節 問題背景3 第三節 研究目的4 第四節 研究假設4 第五結 研究範圍與限制4 第六節 名詞操作定義5 第貳章 文獻探討8 第一節 肌力對健康、運動表現及傷害預防的重要性8 第二節 傳統肌力測量的不便與替代方式9 第三節 地面反作用力訊號可評估肌肉力量10 第四節 慣性感測器和測力板估計地面反作用力的比較11 第五節 文獻總結11 第参章 研究方法12 第一節 實驗受試者12 第二節 儀器設備12 一 測力板12 二 蹲舉架13 三 慣性感測器14 第三節 實驗設計14 第四節 實驗流程15 第五節 資料處理18 第六節 統計分析23 第肆章 研究結果24 第一節 測力板與慣性感測器訊號比對 24 第二節 測力板直接/間接參數與下肢最大肌力相關性&迴歸方程式 26 第三節 IMU直接參數與下肢最大肌力相關性&迴歸方程式31 第伍章 討論35 第一節 以2倍自身體重為肌力水準分界35 第二節 最大肌力1~2倍之族群較適合用CMJ推估的可能原因36 第三節 2倍以上族群無法用CMJ卻能用SJ的推估可能原因37 第四節 峰值功率為2倍以上族群解釋力最高變量的可能原因38 第陸章 結論40 參考文獻41 附錄一、實驗參與者須知48 附錄二、實驗參與者同意書49 附錄三、實驗參與者基本資料表50

    Aasa, U., Svartholm, I., Andersson, F., & Berglund, L. (2017). Injuries among weightlifters and powerlifters: a systematic review. British journal of sports medicine, 51(4), 211-219. doi:10.1136/bjsports-2016-096037

    Balsalobre-Fernández, C., Marchante, D., Baz-Valle, E., Alonso-Molero, I., Jiménez, S. L., & Muñóz-López, M. (2017). Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Frontiers in Physiology, 8, 649. doi:10.3389/fphys.2017.00649

    Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. The Journal of Strength & Conditioning Research, 31(7), 1897-1904.

    Barker, L. A., Harry, J. R., & Mercer, J. A. (2018). Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J Strength Cond Res, 32(1), 248-254. doi:10.1519/jsc.0000000000002160

    Barker, L. A., Harry, J. R., & Mercer, J. A. (2018). Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. The Journal of Strength & Conditioning Research, 32(1), 248-254. doi:10.1519/JSC.0000000000002160

    Bartolomei, S., Nigro, F., Ruggeri, S., Lanzoni, I. M., Ciacci, S., Merni, F., . . . Semprini, G. (2018). Comparison between bench press throw and ballistic push-up tests to assess upper-body power in trained individuals. The Journal of Strength & Conditioning Research, 32(6), 1503-1510.

    Bender, B. (2019). Energy System Development in the Weight Room: Incorporating Prescribed Rest Periods for NCAA Men's Basketball Players. Strength & Conditioning Journal, 41(5), 57-61. doi:10.1519/SSC.0000000000000487

    Bird, S. P., Tarpenning, K. M., & Marino, F. E. (2005). Designing resistance training programmes to enhance muscular fitness. Sports Medicine, 35(10), 841-851. doi:10.2165/00007256-200535100-00002

    Bobbert, M. F., Gerritsen, K. G., Litjens, M. C., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and science in sports and exercise, 28, 1402-1412. doi:10.1097/00005768-199611000-00009

    Buckthorpe, M., Morris, J., & Folland, J. P. (2012). Validity of vertical jump measurement devices. Journal of sports sciences, 30(1), 63-69. doi:10.1080/02640414.2011.624539

    Carlock, J. M., Smith, S. L., Hartman, M. J., Morris, R. T., Ciroslan, D. A., Pierce, K. C., . . . Stone, M. H. (2004). The relationship between vertical jump power estimates and weightlifting ability: a field-test approach. The Journal of Strength & Conditioning Research, 18(3), 534-539. doi:10.1519/R-13213.1

    Cauley, J. A., & Giangregorio, L. (2020). Physical activity and skeletal health in adults. The Lancet Diabetes & Endocrinology, 8(2), 150-162. doi:10.1016/S2213-8587(19)30351-1

    Claudino, J. G., Cronin, J., Mezêncio, B., McMaster, D. T., McGuigan, M., Tricoli, V., . . . Serrão, J. C. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. Journal of science and medicine in sport, 20(4), 397-402. doi:10.1016 / j.jsams.2016.08.011

    Cormie, P., Zopf, E. M., Zhang, X., & Schmitz, K. H. (2017). The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiologic reviews, 39(1), 71-92. doi:10.1093/epirev/mxx007

    Donahue, P. T., Hill, C. M., Wilson, S. J., Williams, C. C., & Garner, J. C. (2021). Squat jump movement onset thresholds influence on kinetics and kinematics. International Journal of Kinesiology and Sports Science, 9(3), 1-7.

    Driss, T., Vandewalle, H., Quièvre, J., Miller, C., & Monod, H. (2001). Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. J Sports Sci, 19(2), 99-105. doi:10.1080/026404101300036271

    Duncan, M. J., Hankey, J., & Nevill, A. M. (2013). Peak-power estimation equations in 12- to 16-year old children: comparing linear with allometric models. Pediatr Exerc Sci, 25(3), 385-393. doi:10.1123/pes.25.3.385

    Duncan, M. J., Hankey, J., & Nevill, A. M. (2013). Peak-power estimation equations in 12-to 16-year-old children: comparing linear with allometric models. Pediatric exercise science, 25(3), 385-393. doi:10.1123/pes.25.3.385

    Duncan, M. J., Lyons, M., & Nevill, A. M. (2008). Evaluation of peak power prediction equations in male basketball players. J Strength Cond Res, 22(4), 1379-1381. doi:10.1519/JSC.0b013e31816a6337

    Faigenbaum, A. D., & Myer, G. D. (2010). Resistance training among young athletes: safety, efficacy and injury prevention effects. British journal of sports medicine, 44(1), 56-63. doi:10.1136/bjsm.2009.068098

    Fiuza-Luces, C., Garatachea, N., Berger, N. A., & Lucia, A. (2013). Exercise is the real polypill. Physiology. doi:10.1152/physiol.00019.2013

    Fransz, D. P., Huurnink, A., de Boode, V. A., Kingma, I., & van Dieën, J. H. (2016). Time series of ground reaction forces following a single leg drop jump landing in elite youth soccer players consist of four distinct phases. Gait & posture, 50, 137-144. doi:10.1016/j.gaitpost.2016.09.002

    Gajewski, J., Michalski, R., Buśko, K., Mazur-Różycka, J., & Staniak, Z. (2018). Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump. Acta Bioeng Biomech, 20(1), 127-134.

    Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–retest reliability of the one-repetition maximum (1RM) strength assessment: a systematic review. Sports Medicine-Open, 6(1), 1-16. doi:10.1186/s40798-020-00260-z
    Hovey, S., Wang, H., Judge, L. W., Avedesian, J. M., & Dickin, D. C. (2019). The effect of landing type on kinematics and kinetics during single-leg landings. Sports Biomechanics, 1-17. doi:10.1080/14763141.2019.1582690

    Hughes, L. J., Peiffer, J. J., & Scott, B. R. (2020). Load–velocity relationship 1RM predictions: A comparison of Smith machine and free-weight exercise. Journal of sports sciences, 38(22), 2562-2568.

    Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. British journal of sports medicine, 48(11), 871-877. doi:10.1136/bjsports-2013-092538

    LeSuer, D. A., McCormick, J. H., Mayhew, J. L., Wasserstein, R. L., & Arnold, M. D. (1997). The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. The Journal of Strength & Conditioning Research, 11(4), 211-213. doi:10.1519/00124278-199711000-00001

    Loturco, I., Suchomel, T., Bishop, C., Kobal, R., Pereira, L. A., & McGuigan, M. (2019). One-repetition-maximum measures or maximum bar-power output: Which is more related to sport performance? International journal of sports physiology and performance, 14(1), 33-37. doi:10.1123/ijspp.2018-0255

    Maddox, E. U., & Bennett, H. J. (2021). Effects of external load on sagittal and frontal plane lower extremity biomechanics during back squats. Journal of Biomechanical Engineering, 143(5).

    Marini, M., Sarchielli, E., Brogi, L., Lazzeri, R., Salerno, R., Sgambati, E., & Monaci, M. (2008). Role of adapted physical activity to prevent the adverse effects of the sarcopenia. A pilot study. Italian journal of anatomy and embryology= Archivio italiano di anatomia ed embriologia, 113(4), 217.

    Markovic, G., Dizdar, D., Jukic, I., & Cardinale, M. (2004). Reliability and factorial validity of squat and countermovement jump tests. The Journal of Strength & Conditioning Research, 18(3), 551-555.

    Markovic, S., Mirkov, D. M., Nedeljkovic, A., & Jaric, S. (2014). Body size and countermovement depth confound relationship between muscle power output and jumping performance. Hum Mov Sci, 33, 203-210. doi:10.1016/j.humov.2013.11.004

    Marques, M. C., Izquierdo, M., Marinho, D. A., Barbosa, T. M., Ferraz, R., & González-Badillo, J. J. (2015). Association between force-time curve characteristics and vertical jump performance in trained athletes. The Journal of Strength & Conditioning Research, 29(7), 2045-2049. doi:10.1519/JSC.0000000000000739

    Mazur, L. J., Yetman, R. J., & Risser, W. L. (1993). Weight-training injuries. Sports Medicine, 16(1), 57-63. doi:https://doi.org/10.2165/00007256-199316010-00005

    McGuigan, M. R., Doyle, T. L., Newton, M., Edwards, D. J., Nimphius, S., & Newton, R. U. (2006). Eccentric utilization ratio: effect of sport and phase of training. The Journal of Strength & Conditioning Research, 20(4), 992-995. doi:10.1519/R-19165.1

    Nielsen, E. T., Jørgensen, P. B., Mechlenburg, I., & Sørensen, H. (2019). Validation of an inertial measurement unit to determine countermovement jump height. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology, 16, 8-13.

    Pérez-Castilla, A., Rojas, F. J., Gómez-Martínez, F., & García-Ramos, A. (2021). Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech, 20(8), 1015-1030. doi:10.1080/14763141.2019.1641545

    Patterson, M. R., Johnston, W., O'Mahony, N., O'Mahony, S., Nolan, E., & Caulfield, B. (2016). Validation of temporal gait metrics from three IMU locations to the gold standard force plate. Paper presented at the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

    Quagliarella, L., Sasanelli, N., Belgiovine, G., Moretti, L., & Moretti, B. (2011). Power output estimation in vertical jump performed by young male soccer players. J Strength Cond Res, 25(6), 1638-1646. doi:10.1519/JSC.0b013e3181d85a99

    Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian journal of medicine & science in sports, 26(6), 648-658. doi:10.1111/sms.12490

    SAYERS, S., HARACKIEWICZ, D., HARMAN, E., FRYKMAN, P., & ROSENSTEIN, M. (1999). Cross-validation of three jump power equations. Medicine & Science in Sports & Exercise, 31(4), 572-577. doi:10.1097/00005768-199904000-00013

    Seitz, L. B., Reyes, A., Tran, T. T., de Villarreal, E. S., & Haff, G. G. (2014). Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis. Sports Medicine, 44(12), 1693-1702. doi:10.1007/s40279-014-0227-1

    Setuain, I., Martinikorena, J., Gonzalez-Izal, M., Martinez-Ramirez, A., Gómez, M., Alfaro-Adrian, J., & Izquierdo, M. (2016). Vertical jumping biomechanical evaluation through the use of an inertial sensor-based technology. Journal of sports sciences, 34(9), 843-851.

    Siewe, J., Rudat, J., Röllinghoff, M., Schlegel, U., Eysel, P., & Michael, J.-P. (2011). Injuries and overuse syndromes in powerlifting. International journal of sports medicine, 32(09), 703-711. doi:10.1055/s-0031-1277207

    Słomka, K. J., Jaric, S., Sobota, G., Litkowycz, R., Skowronek, T., Rzepko, M., & Juras, G. (2019). Effects of Reduced Effort on Mechanical Output Obtained From Maximum Vertical Jumps. Motor Control, 23(2), 205-215. doi:10.1123/mc.2017-0086

    Storen, O., Helgerud, J., Stoa, E. M., & Hoff, J. (2008). Maximal strength training improves running economy in distance runners. Medicine and science in sports and exercise, 40(6), 1087. doi:10.1249/MSS.0b013e318168da2f

    Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419-1449. doi:10.1007/s40279-016-0486-0

    Taylor, K., Chapman, D., Cronin, J., Newton, M. J., & Gill, N. (2012). Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond, 20(1), 12-23.

    Wang, R., Hoffman, J. R., Sadres, E., Bartolomei, S., Muddle, T. W., Fukuda, D. H., & Stout, J. R. (2017). Evaluating upper-body strength and power from a single test: The ballistic push-up. The Journal of Strength & Conditioning Research, 31(5), 1338-1345. doi:10.1519/JSC.0000000000001832

    Weir, J. P., Wagner, L. L., & Housh, T. J. (1994). The effect of rest interval length on repeated maximal bench presses. The Journal of Strength & Conditioning Research, 8(1), 58-60.

    Wing, C. E., Turner, A. N., & Bishop, C. J. (2020). Importance of Strength and Power on Key Performance Indicators in Elite Youth Soccer. J Strength Cond Res, 34(7), 2006-2014. doi:10.1519/jsc.0000000000002446

    下載圖示
    QR CODE