研究生: |
潘叔憶 Shu-I |
---|---|
論文名稱: |
電泳沉積法製作光觸媒濾網與應用於降解甲醛氣體污染物之研究 Fabrication of photocatalyst filter by electrophoretic deposition applied to the degradation of formaldehyde gas pollutants |
指導教授: | 鄧敦平 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 電泳沉積法 、甲醛氣體污染物 、二氧化鈦 、光觸媒 |
英文關鍵詞: | electrophoretic deposition, formaldehyde gaseous pollutants, titanium dioxide, photocatalyst |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以定電流電泳沉積法製作二氧化鈦光觸媒濾網,並實際應用於甲醛氣體污染物之降解性能評估。電泳沉積工作流體是以藻酸鹽陰離子分散劑配合二階製程法將二氧化鈦粉末(Degussa P25)與水調配出不同濃度的TiO2/water奈米流體,並檢測與分析不同濃度與溫度下的理化特性。在電泳沉積製程方面,將針對不同製程參數對電泳沉積製程中沉積膜的表面特性與材質進行探討。在光催化實驗中,分析光觸媒沉積膜改質前後於紫外光與可見光照射下對甲基藍的降解性能。最後並製作光觸媒濾網循環箱,實際針對甲醛氣態污染物的降解性能進行測試。研究結果顯示,奈米流體於不同溫度下其理化特性均會改變。藉由控制工作電流與沉積時間可製作出表觀平整的沉積膜。在甲基藍降解實驗方面,最佳製程參數的樣本在紫外光照射下,No.5 /9mA/5min的樣本對甲基藍降解能力最佳,效果可達78.40%。在光觸媒改質方面,使用0.1M的硝酸鋰改質後於可見光照射下對甲基藍降解效果最佳(35.23%)。在甲醛氣體污染物降解方面,環境溫度的高低會影響光觸媒對甲醛氣體的降解能力,且經過硝酸鋰改質的光觸媒,無論是在紫外光或是可見光下均具有最佳的甲醛降解性能,成功開發可見光激發的光觸媒濾網,有效延伸光觸媒的應用範圍。
This study investigated the production of titanium dioxide photocatalyst film by electrophoretic deposition (EPD) at constant current, and the practical applications for the degradation of formaldehyde gaseous pollutants. The titanium dioxide powder (Degussa P25), alginate dispersant, and water were used to prepare different concentrations of TiO2/water nanofluids as a working fluid for EPD by a two-step synthesis. Analyzed the physical and chemical characteristics for the different concentrations of TiO2/water nanofluids at different temperatures. In the electrophoretic deposition process, the surface characteristics of the deposited film and the material properties are discussed for the different process parameters of EPD. In photocatalytic experiments of deposited film, the photocatalytic efficiency was measured for the degradation of methylene blue under UVA and visible light irradiation. Finally, a performance test for the degradation of gaseous formaldehyde in the photocatalytic circulation reactor was performed.
The results indicate that the TiO2/water nanofluids change their physical and chemical properties at different temperatures. In deposited film production, using a constant current for the electrophoretic deposition process, the operating current and deposition time can be controlled to obtain a homogenized and smooth deposited film. In the methylene blue degradation experiment, the optimal process parameters for the degradation of methylene blue were those in sample NO.5 /9 mA/5 min under UV irradiation is best(78.40%). In photocatalyst modification, the optimal parameters for the degradation of methylene blue are modified by LiNO3 (0.1 M) under visible light irradiation is best(35.23%). In the degradation of formaldehyde gas pollutants, the ambient temperature affects the photocatalytic degradation performance for formaldehyde, and the modification of the photocatalyst by LiNO3 yields the optimal degradation performance for formaldehyde under ultraviolet and visible light irradiation. The successful development of a photocatalytic filter excited by visible light could effectively extend the range of applications in this study.
[1] B. Neirinck, J. Fransaer, O. V. D. Biest and J. Vleugels, Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD), Electrochemistry Communications 11 ( 2009) 57-60.
[2] L. Besra, T. Uchikoshi, T.S. Suzuki and Y. Sakka, Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD), Journal of the European Ceramic Society 29 (2009) 1837-1845.
[3] D. Zhitomirsky, J.A. Roetherb, A.R. Boccaccini and I. Zhitomirsky, Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications, Journal of materials processing technology 209 (2009) 1853–1860.
[4] S. Dor, S. Ruhle, A. Ofir, M. Adler, L. Grinis and A. Zaban, The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates, Colloids and Surfaces A: Physicochemical and Engineering Aspects 342 (2009) 70-75.
[5] B. Raissi, E. Marzbanrad and A.R. Gardeshzadeh, Particle size separation by alternating electrophoretic deposition, Journal of the European Ceramic Society 29 (2009) 3289–3291.
[6] S. Bonnas, H. J. R. Kleissl and J. Haußelt, Electrophoretic deposition for fabrication of ceramic microparts, Journal of the European Ceramic Society 30 (2010) 1159–1162.
[7] V. Brezová, A. Blažková, L. Karpinský, J. Grošková, B. Havl´ınová, V. Jor´ık and M. Èeppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres, Journal of Photochemistry and Photobiology A: Chemistry 109 (1997) 177-183.
[8] T. López, J. Hernandez-Ventura, R. Gómez, F. Tzompantzi, E. Sánchez, X. Bokhimi and A. Garc´ıa, “Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts, Journal of Molecular Catalysis A: Chemical 167 (2001) 101–107.
[9] Y. Bessekhouad, D. Robert, J.V Weber and N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency, Journal of Photochemistry and Photobiology A: Chemistry 167 (2004) 49–57.
[10] S. Yin, P. Zhnag, B. Liu, X. Liu, T. Sato, D. Xue and S. W. Lee, Microwave-assisted hydrothermal synthesis f monoclinic nitrogen-doped titania photocatalyst and its DeNOx ability under visible LED light irradiation, Research on Chemical Intermediates 36 (2010) 69–75.
[11] T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Yao, D. A. Tryk and Y. Kubota, Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst, water research 44 (2010) 904 – 910.
[12] W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation, Journal of Hazardous Materials 173 (2010) 194–199.
[13] Biao Huang and Shiro Saka, " Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde, The Japan Wood Research Society 49 (2003) 79-85.
[14] H.Ichiura, T.Kitaoka and H.Tanaka, “Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique,” Chemosphere 50 (2003) 79-83.
[15] T. Liu, F. Li and X. Li, “TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase,” Journal of Hazardous Materials, Vol.152, 2008, pp. 347-355.
[16] L. Wang, M. Sakurai and H. Kameyama, Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature, Journal of Hazardous Materials 167 (2009) 399–405.
[17] Y. Li , Y. Jiang, S. Peng, F. Jiang, Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes, Journal of Hazardous Materials 182 (2010) 90–96.
[18] W. Zeng, T.M. Liu and D.j. Liu, Formaldehyde gas sensing property andmechanism of TiO2–Ag nanocomposite, Physica B 405 (2010) 4235–4239.
[19] 呂宗昕,圖解奈米科技與光觸媒,台北:商周,2003。
[20] 高濂、鄭珊、張青紅,奈米光觸媒,台北:五南,2004。
[21] 曾亮鋒,新式二氧化鈦觸媒膜的製備,國立中央大學化學研究所碩士論文,桃園,2000。
[22] I. K. Konstantinou, T. M. Sakellarides, V. A. Sakkas and T. A. Albanis, Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions, Environmental Science & Technology 35 (2001) 398-405.
[23] 江哲銘,辦公室空間相關變數對揮發性有機物質濃度影響之研究-以臺灣辦公空間為例,國立成功大學碩士論文,2001。
[24] 袁中新,污染防治與環境管理,台北:巨流,2009。
[25] 陳建民,環境毒物學,台北:新文京,2007。
[26] 甲醛,維基百科:http://zh.wikipedia.org/w/index.php?title=%E7%94%B2%E9%86%9B&variant=zh-tw
[27] 物質安全資料表,甲醛,台北:行政院勞工委員會,2010。
[28] 行政院環境保護署環署空字第0940106804號,室內空氣品質建議值,台北:行政院環境保護署,2005。
[29] 勞工安全衛生法,勞工作業環境空氣中有害物容許濃度標準,台北:行政院勞工委員會,2003。
[30] 柯賢文,表面與薄膜處理技術,台北:全華,2008。
[31] 陳光華、鄧金祥,奈米薄膜技術與應用,台北:五南,2005。
[32] 王建義譯,薄膜工程學,台北:全華,2008。
[33] 田民波,薄膜技術與薄膜材料,台北:五南,2009。
[34] 林國海,以水熱法探討奈米級α-Al2O3披覆氫氧基之研究,國立成功大學資源工程研究所碩士論文,2005。
[35] 翁敏航、楊茹媛、何詠碩、蘇炎坤,Zr0.8 Sn0.2TiO4高介電奈米粉末與薄膜之製備與微波特性,奈米通訊,12(3) (2005) pp.50-56。
[36] 黃昱綸,通電作用對氧化鋅薄膜微結構之影響,國立臺灣師範大學碩士論文, 2010。
[37] L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52 (2007) 1-61.
[38] 魏志豪,電泳披覆製備奈米氧化銅薄膜其特性研究,國立台北科技大學製造科技研究所碩士論文,2005。
[39] H. C. Hamaker, Formation of deposition by electrophoresis, Transactions of the Faraday Society 35 (1940) 279-283.
[40] A.I. Avgustinik, V.S. Vigdergauz and G.I. Zharavlev, Electrophoretic deposition of ceramic masses from, Journal of Applied Chemistry of the USSR (English Translation) 35(10) (1962) 2175-2180.
[41] P.M. Biesheuvel and H. Verweij, Theory of cast formation in electrophoretic deposition, Journal of the American Ceramic Society 82(6) (1999) 1451-1455.
[42] T. Ishihara, K. Shimise, T. Kudo, H. Nishiguchi, T. Akbay and Y. Takita, Preparation of Yttria-stabilised zirconia thin-films on strontium doped LaMnO3 cathode substrate via electrophoretic deposition for solid oxide fuel cells, Journal of the American Ceramic Society 83(8) (2000) 1921–1927.
[43] F. Chen and M. Liu, Preparation of yttria-stabilised zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM–YSZ substrate using an electrophoretic deposition (EPD) process, Journal of the European Ceramic Society 21 (2001) pp.127–134.
[44] N. Sato, M. Kawachi, K. Noto, N. Yoshimoto and M. Yoshizawa, Effect of particle size reduction on crack formation in electrophoretically deposited YBCO films, Physica C: Superconductivity 357–360 ( 2001) 1019–22.
[45] K. Hasegawa, S. Kunugi, M. Tatsumisago and T. Minami, Preparation of thick films by electrophoretic deposition using modified silica particles derived by sol–gel method, Journal of Sol-Gel Science and Technology 15 (1999) 243-249.
[46] Wei Shan, Yahong Zhang, Wuli Yang, Chen Ke, Zi Gao, Yunfen Ye and Yi Tang, Electrophoretic deposition of nano-size zeolites in non-aqueous medium and its application in fabricating thin zeolite membranes, Microporous and Mesoporous Materials 69 (2004) 35-42.
[47] M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell and J.H. Evans, Electrophoretic deposition of hydroxyapatite coatings on metal substrate: a nano-particulate dual coating approach, Journal of Sol-Gel Science and Technology 21 (2001) 39–48.
[48] T.M. Sridhar and U.K. Mudali, Development of bioactive hydroxyapatite coatings on Type 316L stainless steel by electrophoretic deposition for orthopaedic applications, Transactions of the Indian Institute of Metals, 56(3) (2003) 221–230.
[49] J.H. Yum, S.Y. Seo, S. Lee and Y.E. Sung, Y3Al5O12: Ce0.05 phosphor coating on gallium nitride for white light emitting diodes, Journal of The Electrochemical Society 150(2) (2003) 47-52.
[50] M.J. Shane, J.B. Talbot, B.G. Kinney, E. Sluzky and H.R. Hesse, Electrophoretic deposition of phosphors: II deposition experiments and analysis, Journal of Colloid and Interface Science 165 (1994) 334–340.
[51] M.J. Shane, J.B. Talbot, R.G. Schreiber, C.L. Ross, E. Sluzky and K.R. Hesse, Electrophoretic deposition of phosphors: I conductivity and zeta potential measurements, Journal of Colloid and Interface Science 165 (1994) 325–333.
[52] M.T. Ochsenkuehn-Petropoulou, A.F. Altzoumailis, R. Argyropoulou and K.M. Ochsenkuehn, Superconducting coatings of MgB2 prepared by electrophoretic deposition, Analytical and Bioanalytical Chemistry 379 (2004) 792–795.
[53] P. Sarka, S. Mathur, P.S. Nicholson and C.V. Stager, Fabrication of textured Bi–Sr–Ca–Cu–O thick film by electrophoretic deposition, Journal of Applied Physics 69(3) (1991) 1775–1777.
[54] K. Hayashi and N. Furuya, Preparation of gas diffusion electrodes by electrophoretic deposition, Journal of The Electrochemical Society 151( 3) (2004) A354–357.
[55] N. Dougami and T. Takada, Modification of metal oxide semiconductor gas sensor by electrophoretic Deposition, Sensors & Actuators, B: Chemical 93 (2003) 316–20.
[56] A.R. Boccaccini, H. Kern, H.G. Krueger, P.A. Trusty and D.M.R. Taplin, Electrophoretic deposition of nanoceramic particles onto electrically conducting fibre fabrics, Proceedings of the 43rd international scientific colloquium, Technical University of Ilmenau, 1998, pp. 630–635.
[57] S.J. Limmer and G. Cao, Sol–gel electrophoretic deposition for the growth of oxide nanorods, Advanced Materials 15(5) (2003) 427–431.
[58] C. Du, D. Heldbrant and N. Pan, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition, Materials Letters 57 (2002) 434–438.
[59] B. Ferrari, A.J. Sanchez-Herencia and R. Moreno, Electrophoretic forming of Al2O3/Y-TZP layered ceramics form aqueous suspension, Materials Research Bulletin 33(3) (1998) 487–499.
[60] H.S. Maiti, S. Datta and R.N. Basu, High Tc superconductor coating on metal substrates by an electrophoretic technique, Journal of the American Ceramic Society 72(9) (1989) 1733–1735.
[61] J. K. F. Yau and C. C. Sorrell, High-Jc (Bi,Pb)2Sr2Ca2CuO10+x tapes fabricated by electrophoretic deposition, Physica C: Superconductivity 282-287 (1997) 2563–2564.
[62] J. Van Tassel and C.A. Randall, Electrophoretic deposition and sintering of thin/thick PZT film, Journal of the European Ceramic Society 19 (1999) 955–958.
[63] 藻酸鹽,維基百科,http://zh.wikipedia.org/wiki/%E6%B5%B7%E8%97%BB%E9%85%B8
[64] 物質安全資料表,硝酸鋰,台北:行政院勞工委員會,2007。
[65] 物質安全資料表,硝酸鈉,台北:行政院勞工委員會,2006。
[66] 物質安全資料表,硝酸鐵,台北:行政院勞工委員會,2010。
[67] ASHRAE,Standard 90.1,USA,2004。
[68] 鄧敦平,奈米流體熱性質分析與提升熱交換性能之研究,國立台北科技大學機電科技研究所博士論文,2007。