研究生: |
劉艾音 Liu, Ai-Yin |
---|---|
論文名稱: |
水平環型磁偶矩超穎材料 Transverse toroidal dipolar metamaterials |
指導教授: |
蕭惠心
Hsiao, Hui-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 超穎材料 、環極矩 、介電材料 |
英文關鍵詞: | Metamaterials, Toroidal multipoles, Dielectric material |
DOI URL: | http://doi.org/10.6345/NTNU202001042 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環型磁極矩(toroidal dipole)由甜甜圈型的表面電流所產生的環型磁場,屬於第三類的多極矩展開元素。由於自然界中環形矩材料訊號微弱難以被測量,因此一般常被忽略。過去有許多研究利用超穎材料的設計以產生環型磁極矩,但這些設計往往需要複雜的奈米結構或特殊的激發光源才能有效激發環型矩共振並同時削弱電磁多極矩。在本論文中,我們透過三維的週期性矽奈米圓柱結構成功得產生環極矩,與以往不同的是,此結構可經由垂直入射的光源來激發平行於基板的環形偶極矩,此外介電材料能降低材料本身的損耗,同時簡單的奈米結構降低了製程上的困難。在本文中,首先我們透過有限元素法來模擬計算矽奈米圓柱的頻譜響應,並利用多極矩展開進行模態分析,並探討各個結構的幾何參數對於多極矩的影響,以最佳化設計出能環型矩超穎材料。接著,利用電子微影術來製作設計好的矽奈米圓柱,其量測光譜與模擬計算結果十分相符,顯示我們成功實現了環型矩超穎材料。由於環形矩共振具強近場與低遠場輻射的特性,未來極具潛力應用於高敏感度的生醫感測器、非線性光學等應用。
Toroidal dipole is determined by static currents flowing on the surface of a torus which induced circular magnetic field and it can be considered as the third family of multipole decomposition elements. Natural toroidal response was masked by stronger electromagnetic effects, so its signal was too weak to be observed. However, recent studies have solved this problem by using metamaterials to enhance the strength of toroidal dipole. The toroidal metamaterials often require complex nanostructures or special light sources to effectively excite toroidal response and simultaneously weaken electromagnetic multipole moments. Here, we have successfully designed three-dimensional periodic silicon cylinders which can generate transverse toroidal dipole moment through normal incident light. Moreover, plasmonic metamaterials suffer from ohmic loss, so we change such a situation with the use of the simple dielectric nanostructure. In this thesis, we first utilized finite element methods to simulate the optical spectra of dielectric metamaterials and used multipole expansion to analysis the modal distribution. Then, we discuss the effect of geometric parameters on toroidal dipole response in order to optimize our design. Next, the designed structure were fabricated through the electron beam lithography process. The measured spectra are consistent with simulation results, which shows we successfully realize the toroidal metamaterials. Due to the sub-radiation property and strong near-field confinement of toroidal mode, toroidal metamaterials are promising to be applied for high sensitivity biosensors and nonlinear optics.
[1] I. B. Zel’Dovich, "Electromagnetic interaction with parity violation," Sov. Phys. JETP, vol. 6, no. 6, pp. 1184-1186, 1958.
[2] V. Savinov, V. Fedotov, and N. I. Zheludev, "Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials," Physical Review B, vol. 89, no. 20, p. 205112, 2014.
[3] V. Dubovik and V. Tugushev, "Toroid moments in electrodynamics and solid-state physics," Physics reports, vol. 187, no. 4, pp. 145-202, 1990.
[4] V. Flambaum and D. Murray, "Anapole moment and nucleon weak interactions," Physical Review C, vol. 56, no. 3, p. 1641, 1997.
[5] V. Flambaum and I. Khriplovich, "P-odd nuclear forces: a source of parity violation in atoms," Soviet Physics-JETP, vol. 52, no. 5, pp. 835-839, 1980.
[6] A. Ceulemans, L. Chibotaru, and P. Fowler, "Molecular anapole moments," Physical review letters, vol. 80, no. 9, p. 1861, 1998.
[7] I. Zheludev, T. Perekalina, E. Smirnovskaya, S. Fonton, and Y. N. Yarmukhamedov, "Magnetic properties of the nickel-iodine boracite," Pis' ma v Zhurnal Ehksperimental'noj i Teoreticheskoj Fiziki, vol. 20, no. 5, pp. 289-292, 1974.
[8] D. Sannikov and I. Zheludev, "POSSIBILITY OF PHASE-TRANSITION WITH SPONTANEOUS TOROIDAL MOMENT FORMATION IN NICKEL BORACIDES," FIZIKA TVERDOGO TELA, vol. 27, no. 5, pp. 1369-1372, 1985.
[9] B. B. Van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, "Observation of ferrotoroidic domains," Nature, vol. 449, no. 7163, pp. 702-705, 2007.
[10] B. Mettout, P. Tolédano, and M. Fiebig, "Symmetry replication and toroidic effects in the multiferroic pyroxene NaFeSi 2 O 6," Physical Review B, vol. 81, no. 21, p. 214417, 2010.
[11] T. Kaelberer, V. Fedotov, N. Papasimakis, D. Tsai, and N. J. S. Zheludev, "Toroidal dipolar response in a metamaterial," Science, vol. 330, no. 6010, pp. 1510-1512, 2010.
[12] R. Kovall and B. W. Matthews, "Toroidal structure of λ-exonuclease," Science, vol. 277, no. 5333, pp. 1824-1827, 1997.
[13] A. A. Simpson et al., "Structure of the bacteriophage φ29 DNA packaging motor," Nature, vol. 408, no. 6813, pp. 745-750, 2000.
[14] A. A. Antson et al., "The structure of trp RNA-binding attenuation protein," Nature, vol. 374, no. 6524, pp. 693-700, 1995.
[15] C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative‐Index Materials: New Frontiers in Optics," Advanced materials, vol. 18, no. 15, pp. 1941-1952, 2006.
[16] V. M. Shalaev, "Optical negative-index metamaterials," Nature photonics, vol. 1, no. 1, pp. 41-48, 2007.
[17] V. G. Veselago, "Electrodynamics of substances with simultaneously negative and," Usp. Fiz. Nauk, vol. 92, p. 517, 1967.
[18] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," science, vol. 292, no. 5514, pp. 77-79, 2001.
[19] Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Physical review letters, vol. 102, no. 9, p. 093901, 2009.
[20] J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," science, vol. 312, no. 5781, pp. 1780-1782, 2006.
[21] J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature materials, vol. 8, no. 7, pp. 568-571, 2009.
[22] Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Optics express, vol. 14, no. 18, pp. 8247-8256, 2006.
[23] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," science, vol. 315, no. 5819, pp. 1686-1686, 2007.
[24] J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, "Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing," Physical review letters, vol. 103, no. 26, p. 266802, 2009.
[25] S. Palomba, M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics, vol. 11, no. 11, p. 114030, 2009.
[26] W. T. Chen et al., "Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules," Optics Express, vol. 19, no. 13, pp. 12837-12842, 2011.
[27] N. Katsarakis et al., "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics letters, vol. 30, no. 11, pp. 1348-1350, 2005.
[28] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, vol. 306, no. 5700, pp. 1351-1353, 2004.
[29] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science, vol. 312, no. 5775, pp. 892-894, 2006.
[30] G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics letters, vol. 32, no. 1, pp. 53-55, 2007.
[31] J. Yao et al., "Optical negative refraction in bulk metamaterials of nanowires," Science, vol. 321, no. 5891, pp. 930-930, 2008.
[32] T. Li et al., "Structural-configurated magnetic plasmon bands in connected ring chains," Optics express, vol. 17, no. 14, pp. 11486-11494, 2009.
[33] N. Liu and H. Giessen, "Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling," Optics Express, vol. 16, no. 26, pp. 21233-21238, 2008.
[34] N. Liu, H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, vol. 3, no. 3, pp. 157-162, 2009.
[35] N. Liu et al., "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature materials, vol. 8, no. 9, pp. 758-762, 2009.
[36] P. Tassin, L. Zhang, T. Koschny, E. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Physical review letters, vol. 102, no. 5, p. 053901, 2009.
[37] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Physical review letters, vol. 101, no. 4, p. 047401, 2008.
[38] C. C. Chen et al., "Fabrication of three dimensional split ring resonators by stress-driven assembly method," Optics express, vol. 20, no. 9, pp. 9415-9420, 2012.
[39] Y. H. Fu et al., "A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators," Advanced Functional Materials, vol. 21, no. 18, pp. 3589-3594, 2011.
[40] W. M. Zhu et al., "Switchable magnetic metamaterials using micromachining processes," Advanced materials, vol. 23, no. 15, pp. 1792-1796, 2011.
[41] E. Plum, V. Fedotov, P. Kuo, D. Tsai, and N. Zheludev, "Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots," Optics express, vol. 17, no. 10, pp. 8548-8551, 2009.
[42] N. I. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, "Lasing spaser," Nature photonics, vol. 2, no. 6, pp. 351-354, 2008.
[43] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical review letters, vol. 76, no. 25, p. 4773, 1996.
[44] J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, vol. 10, no. 22, p. 4785, 1998.
[45] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2075-2084, 1999.
[46] A. Grigorenko et al., "Nanofabricated media with negative permeability at visible frequencies," Nature, vol. 438, no. 7066, pp. 335-338, 2005.
[47] V. M. Shalaev et al., "Negative index of refraction in optical metamaterials," Optics letters, vol. 30, no. 24, pp. 3356-3358, 2005.
[48] B. H. Cheng, Y.-C. Lan, and D. P. Tsai, "Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light," Optics express, vol. 21, no. 12, pp. 14898-14906, 2013.
[49] C. B. Han, H. Y. Zhe, L. Yung-Chiang, and T. D. Ping, "Selected Topics in Quantum Electronics," IEEE Journal of, vol. 19, p. 4601305, 2013.
[50] S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, "Infrared metamaterial phase holograms," Nature materials, vol. 11, no. 5, pp. 450-454, 2012.
[51] D. M. Pozar, Microwave engineering. John wiley & sons, 2009.
[52] P. Van Tuong et al., "Negative refractive index at the third-order resonance of flower-shaped metamaterial," Journal of lightwave technology, vol. 30, no. 22, pp. 3451-3455, 2012.
[53] J. C. Ginn et al., "Infrared dielectric resonator metamaterial," arXiv preprint arXiv:1108.4911, 2011.
[54] K. Marinov, A. Boardman, V. Fedotov, and N. Zheludev, "Toroidal metamaterial," New Journal of Physics, vol. 9, no. 9, p. 324, 2007.
[55] N. Papasimakis, V. Fedotov, K. Marinov, and N. Zheludev, "Gyrotropy of a metamolecule: wire on a torus," Physical review letters, vol. 103, no. 9, p. 093901, 2009.
[56] T. Raybould et al., "Toroidal circular dichroism," Physical Review B, vol. 94, no. 3, p. 035119, 2016.
[57] V. A. Fedotov, A. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, "Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials," Scientific reports, vol. 3, no. 1, pp. 1-5, 2013.
[58] Y. Bao, X. Zhu, and Z. Fang, "Plasmonic toroidal dipolar response under radially polarized excitation," Scientific reports, vol. 5, p. 11793, 2015.
[59] N. Talebi, S. Guo, and P. A. van Aken, "Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance," Nanophotonics, vol. 7, no. 1, pp. 93-110, 2018.
[60] P. C. Wu et al., "Optical anapole metamaterial," ACS nano, vol. 12, no. 2, pp. 1920-1927, 2018.
[61] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, "Low-loss and high-Q planar metamaterial with toroidal moment," Physical Review B, vol. 87, no. 11, p. 115417, 2013.
[62] Z.-G. Dong et al., "Optical toroidal dipolar response by an asymmetric double-bar metamaterial," Applied Physics Letters, vol. 101, no. 14, p. 144105, 2012.
[63] A. A. Basharin et al., "Dielectric metamaterials with toroidal dipolar response," Physical Review X, vol. 5, no. 1, p. 011036, 2015.
[64] J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, "Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection," Optics letters, vol. 39, no. 23, pp. 6683-6686, 2014.
[65] N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, and P. A. van Aken, "On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities," Applied Physics A, vol. 116, no. 3, pp. 947-954, 2014.
[66] W. Liu, J. Zhang, and A. E. Miroshnichenko, "Toroidal dipole‐induced transparency in core–shell nanoparticles," Laser & Photonics Reviews, vol. 9, no. 5, pp. 564-570, 2015.
[67] C. Multiphysics, "RF Module User's Guide," ed, 2012.
[68] T. Góngora and E. Ley-Koo, "Complete electromagnetic multipole expansion including toroidal moments," Revista Mexicana de física E, vol. 52, no. 2, pp. 177-181, 2006.
[69] C. Gray, "Multipole expansions of electromagnetic fields using Debye potentials," American Journal of Physics, vol. 46, no. 2, pp. 169-179, 1978.
[70] J. D. Jackson, "Classical electrodynamics," ed: American Association of Physics Teachers, 1999.
[71] R. E. Raab, O. L. De Lange, and O. L. de Lange, Multipole theory in electromagnetism: classical, quantum, and symmetry aspects, with applications(2005).
[72] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, vol. 40, no. 6, pp. 634-641, 1992.
[73] D. L. Smith and D. W. Hoffman, "Thin-film deposition: principles and practice," Physics Today, vol. 49, p. 60, 1996.
[74] F. F. Chen, "Introduction to plasma physics Plenum Press," New York, p. 3, 1974.
[75] H. Dun, P. Pan, F. R. White, and R. W. Douse, "Mechanisms of Plasma‐Enhanced Silicon Nitride Deposition Using SiH4/N 2 Mixture," Journal of the Electrochemical Society, vol. 128, no. 7, p. 1555, 1981.
[76] R. K. Marcus and J. A. Broekaert, Glow discharge plasmas in analytical spectroscopy. Wiley Online Library, 2003.
[77] F. Adibi et al., "Defect structure and phase transitions in epitaxial metastable cubic Ti0. 5Al0. 5N alloys grown on MgO (001) by ultra‐high‐vacuum magnetron sputter deposition," Journal of applied physics, vol. 69, no. 9, pp. 6437-6450, 1991.
[78] J. W. Coburn and H. F. Winters, "Ion‐and electron‐assisted gas‐surface chemistry—An important effect in plasma etching," Journal of Applied physics, vol. 50, no. 5, pp. 3189-3196, 1979.
[79] C.-C. Shih, "應變型矽鍺通道金氧半電晶體之研製," National Central University, 2003.
[80] A. E. Miroshnichenko et al., "Nonradiating anapole modes in dielectric nanoparticles," Nature communications, vol. 6, no. 1, pp. 1-8, 2015.