簡易檢索 / 詳目顯示

研究生: 簡綉雲
Hsiu-Yun Chien
論文名稱: 利用實驗與計算解釋三價離子參雜於電解質BaZrO3的導電趨勢
Experimentally and Computationally Investigate Trends of Proton Conductivity of Trivalent Doped Barium Zirconates
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 鋯酸鋇電解質質子導電率
英文關鍵詞: Barium Zirconate, proton conductivity
論文種類: 學術論文
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用實驗與計算研究不同三價參雜金屬於BaZr0.9M0.1O3-α (M3+ = Al 、Ga 、In、Er、Y、Ho、Dy、Gd、Sm、Nd、La)導電率。
    實驗部分利用溶膠-凝膠法(sol-gel)合成粉末並燒結於1150℃下5小時再使用XRD、SEM 與EDS進行特性鑑定分析。BaZr0.9M0.1O3-α質子導電率測量氣氛為飽和水氣下的氮氣(wet-N2),測量溫度為350-700 oC,目的在相似的條件下找出不同參雜金屬對質子導電率的影響與趨勢。計算方面,使用密度泛函理論(DFT)系統,模擬BaZr0.9M0.1O3-α可能的機制,利用討論氧空穴形成能、質子缺陷、參雜與缺陷的相關能、質子水合能與活化能障等觀點來解釋由實驗獲得的趨勢。
    結合實驗與計算可以得到質子導電率趨勢與參雜金屬半徑有密切關係,其獲得最佳導電率的參雜為In3+、Er3+、Y3+、Ho3+、Dy3+,而相對較小的參雜(Al3+、Ga3+)由於電荷的定域化降低水合能力使導電率下降,另一方面,過大的參雜金屬(Gd3+, Sm3+, Nd3+, La3+)低的導電率,是由於A-site參雜造成氧空穴減少並獲得較低的質子濃度。

    The ionic conductivity of trivalent doped BaZr0.9M0.1O3-α, (M3+ = Al 、Ga 、In、Er、Y、Ho、Dy、Gd、Sm、Nd、La) have been experimentally and computationally examined in this work.Experimentally, the powder with same dopant ratios, 10%, has been initially synthesized by sol-gel method, and its physical and chemical properties have been ex-situ characterized by XRD, SEM and EDS. The synthesized powder is further pressurized and sintered at 1150℃ for 5 hours. Protonic conductivity of the resulted BaZr1-xMxO3 pellets has been investigated by both DC and AC (impedance) measurements in the wet N2 atomsphere at 350 – 700 oC. Computationally, formation energies of oxygen vacancy V_o^(..) and proton defect OH_o^., dopant-defect interaction energies , hydration energies and activation barrier of the doped BaZr0.9M0.1O3-α have been systematically examine by the means of density functional theory (DFT) calculation.
    The experimental measurement and computational result show that the best proton conductivity corresponds to the dopants of In3+, Er3+ ,Y3+, Ho3+, Dy3+. The conductivity decreases as the dopant radius are relatively smaller (Al3+, Ga3+) since the charge will be more localized in these dopants and reduce the hydration capability. On the other hand, the lower conductivity of the dopants with larger radius (Gd3+, Sm3+, Nd3+, La3+) can be attributed to the A-site doping problem that will reduce oxygen vacancy and eventually lower the concentration of proton defects.

    致謝 2 中文摘要 3 英文摘要 4 目錄 5 圖表目錄 9 第一章 固態氧化物燃料電池介紹 14 1-0 緒論 14 1-1燃料電池 15 1-1-1 燃料電池原理 15 1-1-2 燃料電池種類 16 1-2固態氧化物燃料電池(SOFC) 20 1-2-1固態氧化物燃料電池簡介 20 1-2-2固態氧化物燃料電池組成 21 1-3固態氧化物電解質 22 1-3-1 氧離子導體:螢石結構(fluorine,AO2) 23 1-3-2 質子導體:鈣鈦礦結構(perovskite ,ABO3) 24 1-3-3 質子導體電解質傳導機制 25 1-4 研究方向 26 第二章 實驗與計算方法 26 2-0實驗藥品列表 27 2-1 粉末製備 28 2-1-1 傳統固相反應法(SR) 28 2-1-2 甘胺酸/硝酸鹽燃燒法(GNP) 29 2-1-3 溶膠-凝膠法(sol-gel) 31 2-2 BaZr1-xMxO3-α導電測量與分析 34 2-2-1 試片成型與燒結條件 34 2-2-2 導電測量準備與裝置 34 2-2-3 導電率分析 36 2-2-4 活化能分析 36 2-3 儀器介紹 37 2-3-1 X光繞射分析(XRD) 37 2-3-2 掃描式電子顯微鏡(SEM) 38 2-3-3 能量散射光譜儀(EDS) 39 2-3-4 電化學阻抗頻譜(EIS) 40 2-4 計算方法介紹 41 2-4-1密度泛函理論(DFT)原理 41 2-4-2 計算方法 46 2-4-3 計算參數設定 47 2-4-4 計算結構設定 48 第三章 結果與討論 50 3-1 實驗部分 50 3-1-1 實驗動機 50 3-1-2 晶格結構分析 56 3-1-3 元素組成與分佈分析 60 3-1-4 顯微結構分析 73 3-1-5 導電圖與阻抗圖譜分析 77 3-1-5-1 不同溫度與不同金屬阻抗圖譜 78 3-1-5-2 總導電率與晶粒導電圖 79 3-1-5-3 總導電率與晶粒導電的活化能與A值分析 81 3-2 計算與實驗結果討論 84 3-2-1氧空穴( vacancy,V_o^(••) ) 85 3-2-1-1氧空穴穩定能量 85 3-2-1-2氧空穴與參雜金屬結合能(binding energy) 85 3-2-1-3氧空穴形成能(formation energy) 86 3-2-1-4 參雜於A、B-site 討論 87 3-2-2質子(proton,H) 88 3-2-2-1質子穩定能量 88 3-2-2-2質子水合能(hydration) 89 3-2-2-3質子與參雜金屬結合能(binding energy) 90 3-2-2-4結構與電荷變化 91 3-2-2-5質子轉移能障(Ea) 96 3-2-2-6 頻率變化 97 第四章 結論 98 第五章 未來展望 101 文獻 102

    1. 伍永福; 赵玉萍; 彭军, 固体氧化物燃料电池(SOFC)研究现状. 中國論文科技在線 2006.
    2. 黃炳照; 鄭銘堯, 固態氧化物燃料電池之進展. 化工技術 2002, 111, 135.
    3. Grove, W. R., On voltaic series and the combination of gases by platinum. Phil. Mag. Se 1839, 3, 127-130.
    4. 彭苏萍; 韩敏芳; 杨翠柏; 王玉倩, 固体氧化物燃料电池. 物理学与新能源材料专题 2004, 33, 90-94.
    5. Gross, M. D.; Vohs, J. M.; Gorte, R. J., Recent progress in SOFC anodes for direct utilization of hydrocarbons. J.Mater.Chem. 2007, 17, 3071-3077.
    6. 方良吉等撰稿, 2010年能源產業技術白皮書. 2010.
    7. http://www.azocleantech.com/article.aspx?ArticleID=70.
    8. Nernst, W., Elektrochem. 1899, 6, 41.
    9. Stöver, D., Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceramics International 2004, 30, 1107.
    10. McIntosh, S.; Gorte, R. J., Direct Hydrocarbon Solid Oxide Fuel Cells. Chem. Rev. 2004, 104, 4845-4865.
    11. Jacobson, A. J., Materials for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 660-674.
    12. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N., Proton conduction in sintered and its application to steam electrolysis for hydrogen production. Solid State Ionics 1981, 3-4, 359-363.
    13. Iwahara, H., Proton conducting ceramics and their applications. Solid State Ionics 1996, 9-15, 86-88.
    14. Schober, T., Applications of oxidic high-temperature proton conductors Solid State Ionics 2003, 162-163, 277-281.
    15. Malavasi, L.; Fisher, C. A. J.; Islam, M. S., Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370-4387.
    16. Fergus, J. W., Doping and defect association in oxides for use in oxygen sensors. JOURNAL OF MATERIALS SCIENCE 2003, 38, 4259-4270.
    17. Islam, M. S.; Slater, P. R.; Tolchard, J. R.; Dinges, T., Doping and defect association in AZrO3 (A =Ca, Ba) and LaMO3 (M=Sc, Ga) perovskite-type ionic conductors. Dalton Trans 2004, 3061-3066.
    18. HAILE, S. M.; STANEFF, G.; RYU, K. H., Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. JOURNAL OF MATERIALS SCIENCE 2001, 36, 1149-1160.
    19. Kreuer, K. D., PROTON-CONDUCTING OXIDES. Annu. Rev. Mater. Res 2003, 33, 333-359.
    20. Islam, M. S., Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 2000, 10, 1027-1038.
    21. Barison, S.; Battagliarin, M.; Cavallin, T.; Doubova, L.; Fabrizio, M.; Mortalo, C.; Boldrini, S.; Malavasic, L.; Gerbas, R., High conductivity and chemical stability of BaCe1-x-yZrxYyO3d proton conductors prepared by a sol–gel method. J. Mater. Chem. 2008, 18, 5120-5128.
    22. Fabbri, E.; Pergolesi, D.; Traversa, E., Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 2010, 39, 4355-4369.
    23. Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M., Ba(Zr0.1Ce0.7Y0.2)O3-d as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Adv. Mater. 2006, 18, 3318-3320.
    24. Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H., Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000, 138, 91-98.
    25. Merinova, B.; Goddard, W., Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum mechanics. THE JOURNAL OF CHEMICAL PHYSICS 2009, 130, 194707.
    26. Stokes, S. J.; Islam, M. S., Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J.Mater.Chem. 2010, 20, 6258-6264.
    27. Kreuer, K. D.; Adams, S.; Mu¨nch, W.; Fuchs, A.; Klock, U.; Maier, J., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 2001, 145, 295-306.
    28. Yamazaki, Y.; Babilo, P.; Haile, S. M., Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake. Chem. Mater. 2008, 20, 6352-6357.
    29. Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Bartolomeo, E. D.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E., High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature materials 2010, 9, 846-852.
    30. Ahmed, I.; Kinyanju, F. G.; Rahman, S. M. H.; Steegstra, P.; Eriksson, S. G.; Ahlbergc, E., Proton Conductivity in Mixed B-Site Doped Perovskite Oxide BaZr0.5In0.25Yb0.25O3-δ . Journal of The Electrochemical Society 2010, 157, B1819-B1824.
    31. Ricote, S.; Bonanos, N.; Caboche, G., Water vapour solubility and conductivity study of the proton conductor BaCe0.9-xZrxY0.1O3-δ. Solid State Ionics 2009, 180, 990-997.
    32. Braun, A.; Duval, S.; Ried, P.; Embs, J., Proton diffusivity in the BaZr0.9Y0.1O3-δ proton conductor. J Appl Electrochem 2009, 39, 471-475.
    33. Iguchi, F.; Nagao, Y.; Sata, N.; Yugami, H., Proton concentration in 15 mol% Y-doped BaZrO3 proton conductors prepared at various temperatures Solid State Ionics 2010.
    34. Fabbri, E.; Pergolesi, D.; Licoccia, S.; Traversa, E., Does the increase in Y-dopant concentration improve the proton conductivity of
    BaZr1-xYxO3-δ fuel cell electrolytes? Solid State Ionics 2010, 181, 1043-1051.
    35. Phair, J. W.; Badwal, S. P. S., Review of proton conductors for hydrogen separation. Ionics 2006, 12, 103-115.
    36. Caetano, E.; Souza, C. d.; Muccillo, R., Properties and Applications of Perovskite Proton Conductors. Materials Research. 2010, 13, 385-394.
    37. http://www.chem.ccu.edu.tw/~hu/elements/.
    38. Shannon, R. D., Acta Crystallogr 1976, A32, 751.
    39. Berzelius, J. J., Prog. Ann. 1825, 4, 126.
    40. Hlavacek, V., Ceram. Bull. 1991, 70, 240.
    41. He, T.; He, Q.; Wang, N., Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties. Journal of Alloys and Compounds 2005, 396, 309-315.
    42. Chick, L. A.; Pederson, L. R.; Maupin, G. D.; Bates, J. L.; Thomas, L. E.; Exarhos, G. J., Glycine-nitrate combustion synthesis of oxide ceramic powders Materials Letters 1990, 10, 6-12.
    43. Babilo, P.; Uda, T.; Haile, S. M., Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 2007, 22, 1322.
    44. Pechini, M., U.S. Patent 1967, 3, 697.
    45. http://www.me.tnit.edu.tw/~me010/95NSC-SEM/index.htm.
    46. http://www.pic.com.tw/layout/zh-tw/news/detail.asp?gid=15&nid=299.
    47. http://www.chem.ccu.edu.tw/~hu/Web_Lib/QC_Tutorial/qchem.pdf.
    48. Cleperley, D. M.; Alder, B. J., Phys. Rev. Lett. 1980, 45, 566.
    49. Perdew, J. P.; Yang, Y., Phys. Rev. B 1992, 45, 244.
    50. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558.
    51. Kresse, G.; Hafner, J., Phys. Rev. B 1994, 49, 1425.
    52. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
    53. Blöchl, P. E., Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
    54. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
    55. Wu, J.; Li, L. P.; Espinosa, W. T. P.; Haile, S. M., Defect chemistry and transport properties of BaxCe0.85M0.15O3-δ. J. Mater. Res. 2004, 19, 2366.
    56. Tong, J.; Clark, D.; Bernau, L.; Sanders, M.; O’Hayre, R., Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. Journal of Materials Cnemistry 2010, 20, 6333-6341.
    57. Shim, J. H.; Park, J. S.; An, J.; M.Gur, T.; Kang, S.; Prinz, F. B., Intermediate-Temperature Ceramic Fuel Cells with Thin Film
    Yttrium-Doped Barium Zirconate Electrolytes. Chem. Mater. 2009, 21, 3290-3296.
    58. Shima, D.; Haile, S. M., The influence of cation non-stoichiometry on the properties of
    undoped and gadolinia-doped barium cerate. Solid State Ionics 1997, 97, 443-455.
    59. Wu, J.; Davies, R. A.; Islam, M. S.; Haile, S. M., Atomistic Study of Doped BaCeO3: Dopant Site-Selectivity and
    Cation Nonstoichiometry. Chem. Mater. 2005, 17, 846-851.
    60. Glo¨cknera, R.; Islamb, M. S.; Norbya, T., Protons and other defects in BaCeO : a computational study. Solid State Ionics 1999, 122, 145-156.
    61. Daviesa, R. A.; Islama, M. S.; Gale, J. D., Dopant and proton incorporation in perovskite-type zirconates. Solid State Ionics 1999, 126, 323-335.
    62. Pasierb, P.; M.Wierzbicka; Komornicki, S.; Rekas, M., Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources 2009, 194, 31-37.
    63. Kreuer, K. D., Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 1999, 125, 285-302.
    64. Ahmed, I.; SeikhM.H.Rahman; PatrickSteegstra; StefanT.Norberg; Eriksson, S.-G.; ElisabetAhlberg; ChrisS.Knee; StephenHull, Effect of co-doping on proton conductivity in perovskite oxides BaZr0.9In0.05M0.05O3-δ (M=Yb3+ or Ga3+). INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2010, 35, 6381-6391.
    65. Iwahara, H.; Yajima, T.; Hibino, T.; Ozaki, K.; Suzuki, H., Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 1993, 61, 65-69.
    66. Imashuku, S.; Uda, T.; Nose, Y.; Awakura, Y., Effect of isovalent cation substitution on conductivity and microstructure of
    sintered yttrium-doped barium zirconate. Journal of Alloys and Compounds 2010, 490, 672-676.
    67. Bohn, H. G.; Schober, T., Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 2000, 83, 768.
    68. Laidoudi, M.; Talib, I. A.; Omar, R., Investigation of the bulk conductivity of BaZr0.95M0.05O3-α (M =Al, Er, Ho, Tm, Yb and Y) under wet N2. J. Phys. D: Appl. Phys. 2002, 35, 397.
    69. Gorelov, V. P.; Balakireva, V. B.; Kleshchev, Y. N.; Brusentsov, V. P., Preparation and Electrical Conductivity of BaZr1-xRxO3-α (R = Sc, Y, Ho, Dy, Gd, In). Inorganic Materials 2001, 37, 535-538.
    70. Imashuku, S.; Uda, T.; Nose, Y.; Taniguchi, G.; Ito, Y.; Awakura, Y., Dependence of Dopant Cations on Microstructure and Proton Conductivity of Barium Zirconate. Journal of The Electrochemical Society 2009, 156, B1-B8.
    71. Bévillon, É.; Geneste, G., Hydration properties of BaSn0.875M0.125O3-δ substituted by large dopants (M=In, Y, Gd, and Sm) from first principles. PHYSICAL REVIEW B 2008, 77, 184113.
    72. Bjørheim, T. S.; K., A.; Ahmed, I.; Haugsrud, R.; Stølen, S.; Norby, T., A combined conductivity and DFT study of protons in PbZrO3 and alkaline earth zirconate perovskites. Solid State Ionics 2010, 181, 130-137.

    下載圖示
    QR CODE