研究生: |
王重引 Wang, Chung-Yin |
---|---|
論文名稱: |
適應性回饋的動作表現與學習效應:檢驗挑戰點假說 Motor performance and learning effects of adaptive feedback: An examination of Challenge Point Hypothesis |
指導教授: | 卓俊伶 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 練習安排 、工作難度 、外增回饋 |
英文關鍵詞: | practice scheduling, task difficulty, augmented feedback |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
適應性練習是依據學習者技能水準漸次提高工作難度的練習安排方式,本研究依此提供對應的回饋頻率,藉以檢驗挑戰點假說 (Guadagnoli & Lee, 2004) 之預測。本研究旨在檢驗適應性練習中,給予學習者適應性回饋的動作表現與學習效應。實驗參與者為41名成年人(22.4±3.1歲),隨機分派至50%回饋組、全部回饋組或適應性回饋組。實驗工作為三種不同工作難度的低手拋擲動作。學習者在獲得期依據表現漸次增加工作難度,並於15分鐘後與24小時後的立即保留測驗與延遲保留測驗試作。依變項是準確分數、獲得期試作次數與動作學習效率。在獲得期中,準確分數與試作次數,皆以混合設計二因子變異數分析比較其差異,其中工作難度為重複量數。立即與延遲保留測驗則以獨立樣本單因子變異數分析,檢驗準確分數與動作學習效率的差異。結果發現:(一)在獲得期中,工作難度的主要效果達顯著差異,但組間未達顯著差異;(二)在立即與延遲保留測驗中,組間的準確分數達顯著差異;(三)三組的動作學習效率達顯著差異。因此,本研究的結論是:(一)在適應性練習情況下,依工作難度逐漸的增加給予的適應性回饋,對立即的動作表現無影響;(二)適應性練習情況下,依工作難度逐漸的增加給予的適應性回饋有利於動作學習;(三)在適應性練習情況下,依工作難度逐漸的增加給予頻率的適應性回饋,其動作學習效率較優於固定的回饋頻率。
Adaptive practice is a practice schedule that concerns learner’s skill level to increase task difficulty gradually. This study provided the frequency of feedback that match task difficulty to examine the predictions of Challenge Point Hypothesis (Guadagnoli & Lee, 2004). Propose of this study is to examine the motor performance and learning effects when provide learner adaptive feedback in the adaptive practice. Forty-one (22.4±3.1 years) adults served as participants and were randomly assigned into 50% feedback, all feedback, and adaptive feedback groups. The under hand throw task was utilized. In acquisition, task difficulty increasing as a function of learner’s performance. Fifteen minutes and twenty four hours later, 12 trails in immediate and delayed retention tests were administered. Dependent variables were accuracy score, times of trails in acquisition, and efficiency of motor learning. For acquisition, accuracy score and times of trails in acquisition were analyzed by mixed design two-way ANOVA. For immediate and delayed retention tests, accuracy score and efficiency of motor learning were analyzed by one-way ANOVA. Results showed that (1) During acquisition phase, statistical significance were found on main effect of task difficulty, but not on groups; (2) Significant difference among three groups on accuracy score was found in immediate and delayed retention tests; and (3) Efficiency of motor learning were found significant difference among three groups. Thus, this study suggested that (1) Providing feedback increasing as a function of task difficulty in the adaptive practice doesn’t affect learner’s motor performance; (2) The adaptive feedback provided in adaptive practice is beneficial to motor learning; and (3) The efficiency of motor learning in practice condition, which providing adaptive feedback in adaptive practice, is better than practice condition which providing feedback with fixed frequency.
王重引、卓俊伶 (2014)。漸增情境干擾結合漸退回饋:檢驗動作學習的附加效應。大專體育學刊,16,378-386。DOI: 10.5297/ser.1604.003
吳詩薇、張至滿、卓俊伶 (2012)。摘要結果獲知的時間與順序安排:檢驗時近效應。大專體育學刊,14,152-160。DOI:10.5297/ser.1402.002
Al-Ameer, H., & Toole, T. (1993). Combinations of blocked and random practice orders: Benefits to acquisition and retention. Journal of Human Movement Studies, 25, 177-191.
Albaret, J. M., & Thon, B. (1998). Differential effects of task complexity on contextual interference in a drawing task. Acta Psychologica, 100, 9-24. DOI: 10.1016/S0001-6918(98)00022-5
Ali, A., Fawver, B., Kim, J., Fairbrother, J., & Janelle, C. M. (2012). Too much of a good thing: Random practice scheduling and self-control of feedback lead to unique but not additive learning benefits. Frontiers in Psychology, 3, 1-9.
Brydges, R., Carnahan, H., Backstein, D., & Dubrowski, A. (2007). Application of motor learning principles to complex surgical tasks: Searching for the optimal practice schedule. Journal of Motor Behavior, 39, 40-48. DOI: 10.3200/JMBR.39.1.40-48
Choi, Y., Qi, F., Gordon, J., & Schweighofer, N. (2008). Performance-based adaptive schedules enhance motor learning. Journal of Motor Behavior, 40, 273-280. DOI: 10.3200/JMBR.40.4.273-280
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Del Rey, P., & Shewokis, P. (1993). Appropriate summary KR for learning timing tasks under conditions of high and low contextual interference. Acta Psychologica, 83, 1-12. DOI: 10.1016/0001-6918(93)90031-L
Del Rey, P., Wughalter, E. H., & Whitehurst, M. (1982). The effects of contextual interference on females with varied experience in open sport skills. Research Quarterly for Exercise and Sport, 53, 108-115. DOI: 10.1080/02701367.1982.10605236
Goode, S., & Magill, R. A. (1986). Contextual interference effects in learning three badminton serves. Research Quarterly for Exercise and Sport, 57, 308-314. DOI: 10.1080/02701367.1986.10608091
Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36, 212-224. DOI: 10.3200/JMBR.36.2.212-224
Guadagnoli, M. A., Dornier, L. A., & Tandy, R. (1996). Optimal summary knowledge of results: The influence of task related experience and complexity. Research Quarterly for Exercise and Sport, 67, 239-248. DOI: 10.1080/02701367.1996.10607950
Guadagnoli, M. A., Holcomb, W. R., & Weber, T. J. (1999). The relationship between contextual interference effects and performer expertise on the learning of a putting task. Journal of Human Movement Studies, 37, 19-36. DOI: 10.1080/00222895.1990.10735507
Guthrie, E. R. (1952). The psychology of learning. NY: Harper & Row.
Hall, K. G., & Magill, R. A. (1995). Variability of practice and contextual interference in motor skill learning. Journal of Motor Behavior, 27, 299-309. DOI: 10.1080/00222895.1995.9941719
Hebert, E. P., Landin, D., & Solmon, M. A. (1996). Practice schedule effects on the performance and learning of low-and high-skilled students: An applied study. Research Quarterly for Exercise and Sport, 67, 52-58. DOI: 10.1080/02701367.1996.10607925
Hodges, N. J., Lohse, K. R., Wilson, A., Lim, S. B., & Mulligan, D. (2014). Exploring the dynamic nature of contextual interference: Previous experience affects current practice but not learning. Journal of Motor Behavior, 46, 455-467. DOI: 10.1080/00222895.2014.947911
Lee, T. D., & Carnahan, H. (1990). When to provide knowledge of results during motor learning: Scheduling effects. Human Performance, 3, 87-105. DOI: 10.1207/s15327043hup0302_2
Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9, 730-746. DOI: 10.1037//0278-7393.9.4.730
Lee, T. D., Wishart, L. R., Cunningham, S., & Carnahan, H. (1997). Modeled timing information during random practice eliminates the contextual interference effect. Research Quarterly for Exercise and Sport, 68, 100-105. DOI: 10.1080/02701367.1997.10608871
Magill, R. A. (2011). Motor learning and control: Concepts and applications (9th ed.). NY: MaGraw-Hill.
Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference effect in motor skill acquisition. Human Movement Science, 9, 241-289. DOI: 10.1016/0167-9457(90)90005-X
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. NY: Holt, Rinehart and Winston.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. DOI: 10.1016/0028-3932(71)90067-4
Onla-or, S., & Winstein, C. J. (2008). Determining the optimal challenge point for motor skill learning in adults with moderately severe Parkinson's disease. Neurorehabilitation and Neural Repair, 22, 385-395. DOI: 10.1177/1545968307313508
Porter, J. M., & Magill, R. A. (2010). Systematically increasing contextual interference is beneficial for learning sport skills. Journal of Sports Sciences, 28, 1277-1285. DOI: 10.1080/02640414.2010.502946
Porter, J. M., & Saemi, E. (2010). Moderately skilled learners benefit by practicing with systematic increases in contextual interference. International Journal of Coaching Science, 4, 61-71.
Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95, 355-386. DOI: 10.1037//0033-2909.95.3.355
Sanger, T. D. (2004). Failure of motor learning for large initial errors. Neural Computation, 16, 1873-1886. DOI: 10.1162/0899766041336431
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225-260. DOI: 10.1037/h0076770
Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. Tutorials in motor neuroscience (pp. 59-75). Dordrecht, Netherlands: Kluwer.
Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.
Schmidt, R. A., Lange, C., & Young, D. E. (1990). Optimizing summary knowledge of results for skill learning. Human Movement Science, 9, 325-348. DOI: 10.1016/0167-9457(90)90007-Z
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.
Shea, C. H., Kohl, R., & Indermill, C. (1990). Contextual interference: Contributions of practice. Acta Psychologica, 73, 145-157. DOI: 10.1016/0001-6918(90)90076-R
Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5, 179-187. DOI: 10.1037//0278-7393.5.2.179
Sidaway, B., Ahn, S., Boldeau, P., Griffin, S., Noyes, B., & Pelletier, K. (2008). A comparison of manual guidance and knowledge of results in the learning of a weight-bearing skill. Journal of Neurologic Physical Therapy, 32, 32-38. DOI: 10.1097/NPT.0b013e318165948d
Sidaway, B., Bates, J., Occhiogrosso, B., Schlagenhaufer, J., & Wilkes, D. (2012). Interaction of feedback frequency and task difficulty in children's motor skill learning. Physical Therapy, 92, 948-957. DOI: 10.2522/ptj.20110378
Sidhu, R. S., Park, J., Brydges, R., MacRae, H. M., & Dubrowski, A. (2007). Laboratory-based vascular anastomosis training: A randomized controlled trial evaluating the effects of bench model fidelity and level of training on skill acquisition. Journal of Vascular Surgery, 45, 343-349. DOI: 10.1016/j.jvs.2006.09.040
Simon, D. A., & Bjork, R. A. (2001). Metacognition in motor learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 27, 907-912. DOI: 10.1037/0278-7393.27.4.907
Simon, D. A., Cullen, J. D., & Lee, T. D. (2002). Win-shift/lose-stay: Contingent switching as an alternative to random practice? Journal of Sport and Exercise Psychology, 24, 116-116. DOI: 10.1136/bjsm.2003.008961
Simon, D. A., Lee, T. D., & Cullen, J. D. (2008). Win-shift, lose-stay: Contingent switching and contextual interference in motor learning. Perceptual and Motor Skills, 107, 407-418. DOI: 10.2466/pms.107.2.407-418
Sparrow, W. A., & Summers, J. J. (1992). Performance on trials without knowledge of results (KR) in reduced relative frequency presentations of KR. Journal of Motor Behavior, 24, 197-209. DOI: 10.1080/00222895.1992.9941615
Sugarman, B. (1989). The well-managed human service organization: Criteria for a management audit. Administration in Social Work, 12, 17-27. DOI: 10.1300/J147v12n04_02
Sullivan, K. J., Kantak, S. S., & Burtner, P. A. (2008). Motor learning in children: Feedback effects on skill acquisition. Physical Therapy, 88, 720-732. DOI: 10.2522/ptj.20070196
Swinnen, S. P., Walter, C. B., Serrien, D. J., & Vandendriessche, C. (1992). The effect of movement speed on upper-limb coupling strength. Human Movement Science, 11, 615-636. DOI: 10.1016/0167-9457(92)90018-7
Vygotsky, L. S. (1978). Mind in socirty: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 677-691. DOI: 10.1037/0278-7393.16.4.677
Winstein, C. J., Pohl, P. S., & Lewthwaite, R. (1994). Effects of physical guidance and knowledge of results on motor learning: Support for the guidance hypothesis. Research Quarterly for Exercise and Sport, 65, 316-323. DOI: 10.1080/02701367.1994.10607635
Wu, W. F., & Magill, R. A. (2011). Allowing learners to choose: Self-controlled practice schedules for learning multiple movement patterns. Research Quarterly for Exercise and Sport, 82, 449-457. DOI: 10.1080/02701367.2011.10599777
Wu, W. F., Young, D. E., Schandler, S. L., Meir, G., Judy, R. L., Perez, J., & Cohen, M. J. (2011). Contextual interference and augmented feedback: Is there an additive effect for motor learning? Human Movement Science, 30, 1092-1101. DOI: 10.1016/j.humov.2011.02.004
Wulf, G., & Schmidt, R. A. (1989). The learning of generalized motor programs: Reducing the relative frequency of knowledge of results enhances memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 748-757. DOI: 10.1037/0278-7393.15.4.748
Wulf, G., Hörger, M., & Shea, C. H. (1999). Benefits of blocked over serial feedback on complex motor skill learning. Journal of Motor Behavior, 31, 95-103. DOI: 10.1080/00222899909601895
Wulf, G., Lee, T. D., & Schmidt, R. A. (1994). Reducing knowledge of results about relative versus absolute timing: Differential effects on learning. Journal of Motor Behavior, 26, 362-369. DOI: 10.1080/00222895.1994.9941692
Wulf, G., Schmidt, R. A., & Deubel, H. (1993). Reduced feedback frequency enhances generalized motor program learning but not parameterization learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1134-1150. DOI: 10.1037//0278-7393.19.5.1134