簡易檢索 / 詳目顯示

研究生: 謝明哲
Sie, Ming-Jhe
論文名稱: 李黃楊修正對超冷原子量子干涉的效應
Effect of Lee-Huang-Yang correction on quantum interference in ultracold atoms
指導教授: 吳文欽
Wu, Wen-Chin
口試委員: 張明哲
Chang, Ming-Che
洪子倫
Horng, Tzyy-Leng
吳文欽
Wu, Wen-Chin
口試日期: 2022/07/05
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 玻色-愛因斯坦凝聚態超冷原子量子干涉干涉條紋李黃楊量子修正
英文關鍵詞: Bose-Einstein condensate, ultracold atoms, quantum interference, interference fringes, Lee-Huang-Yang quantum correction
研究方法: 主題分析比較研究
DOI URL: http://doi.org/10.6345/NTNU202201251
論文種類: 學術論文
相關次數: 點閱:78下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來李黃楊(Lee-Huang-Yang)量子修正在冷原子系統激起了很高的研究興趣。在長程序電偶極(long-ranged dipolar)系統中,李黃楊修正可以導致穩定的超固態(supersolid state),而在相互吸引的的二分量短程序(two-component short-ranged)系統中,李黃楊修正可以導致量子液滴(quantum droplet)的形成。
    在本論文中,我研究李黃楊修正如何影響兩個膨脹的玻色-愛因斯坦凝聚體(Bose-Einstein condensates)的干涉(interference)。從具有李黃楊修正的三維Gross-Pitaevskii (GP)方程理論開始,首先推導出相關的準一維二分量耦合方程式,藉以研究兩個相干(coherent)、空間分離的凝聚體的干涉。接著,數值求解耦合方程式得到兩個膨脹冷凝物的干涉結果。透過控制變因,一次只改變一個參數,我具體得出干涉波長如何受到李黃楊修正的效應的影響。我們的研究結果應對相關實驗具參考價值。

    Recently Lee-Huang-Yang (LHY) correction has stimulated a lot of interest in ultracold atoms. In long-ranged dipolar systems, LHY correction can result in stable supersolid states, whereas in a two-component short-ranged system with attractive interspecies interaction, it could lead to a novel state of quantum droplets. In this thesis, I investigate the effect of LHY correction on the interference of two expanding Bose-Einstein condensates. Starting from a general three-dimensional theory of Gross–Pitaevskii equation with the LHY correction, I derive the coupled equations for the wave functions of two
    coherent, spatially displaced condensates in a quasi-one-dimensional geometry. Solving the coupled equations enables the study of interference of the two expanding condensates along a particular direction. By varying the parameter one at a time, our simulations show explicitly how the wavelength of the interference depends on the effect of LHY correction. Our results should shed some light on the relevant experiments.

    目 次 謝辭 p.i 摘要 p.ii Abstract p.iii 目次 p.iv 第一章 簡介 1.1 玻色-愛因斯坦凝聚(BEC) P.1 1.2 Gross-Pitaevskii Equations(GPE) P.4 1.3 李黃楊(Lee-Huang-Yang,LHY)量子修正 P.7 第二章 干涉 2.1 古典楊氏雙狹縫干涉簡介 P.9 2.2 量子干涉 P.11 2.2.1 冷原子的量子干涉簡介 P.11 2.2.2 干涉實驗(一) P.12 2.2.3 干涉實驗(二) P.14 第三章 量子干涉的理論 3.1 GPE 方法 P.18 3.2 沒有粒子相互作用系統的干涉 P.20 3.3 含 LHY 修正的 GPE P.22 3.4 降低維度與無因次化 P.23 第四章 結果與討論 4.1 簡介 P.29 4.2 數值模擬結果 P.30 4.2.1 改變自由膨脹時間 P.30 4.2.2 改變兩團 BEC 初始半徑 P.35 4.2.3 改變兩團 BEC 初始質心距離 P.40 4.2.4 改變 LHY 效應大小 P.45 4.2.5 改變兩團 BEC 初始相位差 P.50 第五章 結論與未來展望 P.58 參考文獻 P.59

    參考文獻:

    [1] S.N. Bose, Plancks gesetz und Lichtquantenhypothese, Zeitschrift fur Physik,26,178-181(1924).
    [2] A. Einstein, Quantentheorie des einatomigen idealen gases, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22, 261–267(1924).
    [3] Ashley Hamer, The Double-Slit Experiment Cracked Reality Wide Open,(2019).
    [4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell,Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).
    [5] K. B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D. M. Kurn,and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969 (1995).
    [6] Eric A.Cornell and Carl E.Wieman, Bose-Einstein-condensation in a dilute gas; The first 70 years and some recent experiments, Nobel Lecture (2001).
    [7] C.J. Pethick,H. Smith, Bose-Eunstein Condensation in Dilute Gases, Cambridge University Press (2002).
    [8] A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,Rev. Mod. Phys. 73, 307 (2001).
    [9] E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars 34, BirkhaEuser (2005).
    [10] L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, 13,451–454 (1961).
    [11] E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo. Cimento,20,454–457 (1961).
    [12] E.H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A,61,043602 (2000).
    [13] L. Erd˝os, B. Schlein and H.T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. Math. 172,291–370 (2010).
    [14] T.D. Lee, Kerson Huang, and C.N. Yang, Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev.106, 1135 (1957).
    [15] Zhi-Huan Luo, Wei Pang, Bin Liu3, Yong-Yao Li, Boris A. Malomed, A new form of liquid matter: Quantum droplets, Frontiers of Physics, (2021).
    [16] D.S. Petrov, Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture, Phys. Rev. Lett. 115,155302 (2015).
    [17] M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997).
    [18] J.I. Cirac, C.W. Gardiner, M. Naraschewski, P. Zoller, ibid, Continuous observation of interference fringes from Bose condensates, Physical Review A 54, R3714(R) (1996).
    [19] Y. Castin and J. Dalibard, Relative phase of two Bose-Einstein condensates, Phys. Rev. A 55, 4330 (1997).
    [20] J.E. Simsarian, J. Denschlag, Mark Edwards, Charles W. Clark, L. Deng, E.W. Hagley, K. Helmerson, S.L. Rolston, and W.D. Phillips ,Imaging the Phase of an Evolving Bose-Einstein Condensate Wave Function, Phys. Rev. Lett. 85,2040 (2000).
    [21] M. Kozuma, L. Deng, E.W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S.L. Rolston,and W.D. Phillips, Coherent Splitting of Bose-Einstein Condensed Atoms with Optically Induced Bragg Diffraction, Phys. Rev. Lett. 82, 871 (1999).
    [22] S.-K. Yip, Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate, Phys. Rev. Lett. 83, 4677 (1999).
    [23] A. Burchianti C.D’Errico L. Marconi F. Minardi C. Fort and M. Modugno, Effect of interactions in the interference pattern of Bose Einstein condensates, Phys.Rev. A 102 ,043314 (2020).
    [24] A. Burchianti, C.D’Errico, S. Rosi, A. Simoni, M. Modugno, C. Fort, and F. Minardi, Dual-species Bose-Einstein condensate of 41K and 87Rb in a hybrid trap, Phys. Rev. A 98, 063616 (2018).
    [25] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,Rev. Mod. Phys.71,463 (1999).
    [26] C.H. Hsueh,unpublished notes (2022).
    [27] Bao W, Jaksch D and Markowich P A of Comput. Numerical solution of the Gross-Pitaevskii Equation for Bose-Einstein Condensation, Journal of Computational Physics. 187 318-342 (2003).
    [28] R. Zamora-Zamora, G.A. Dom´nguez-Castro,C.Trallero-Giner, R. Paredes, and V. Romero-Roch, Validity of Gross-Pitaevskii solutions of harmonically confined BEC gases in reduced dimensions , Journal of Physics Communications (2019).

    下載圖示
    QR CODE