研究生: |
謝明哲 Sie, Ming-Jhe |
---|---|
論文名稱: |
李黃楊修正對超冷原子量子干涉的效應 Effect of Lee-Huang-Yang correction on quantum interference in ultracold atoms |
指導教授: |
吳文欽
Wu, Wen-Chin |
口試委員: |
張明哲
Chang, Ming-Che 洪子倫 Horng, Tzyy-Leng 吳文欽 Wu, Wen-Chin |
口試日期: | 2022/07/05 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 玻色-愛因斯坦凝聚態 、超冷原子 、量子干涉 、干涉條紋 、李黃楊量子修正 |
英文關鍵詞: | Bose-Einstein condensate, ultracold atoms, quantum interference, interference fringes, Lee-Huang-Yang quantum correction |
研究方法: | 主題分析 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201251 |
論文種類: | 學術論文 |
相關次數: | 點閱:151 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來李黃楊(Lee-Huang-Yang)量子修正在冷原子系統激起了很高的研究興趣。在長程序電偶極(long-ranged dipolar)系統中,李黃楊修正可以導致穩定的超固態(supersolid state),而在相互吸引的的二分量短程序(two-component short-ranged)系統中,李黃楊修正可以導致量子液滴(quantum droplet)的形成。
在本論文中,我研究李黃楊修正如何影響兩個膨脹的玻色-愛因斯坦凝聚體(Bose-Einstein condensates)的干涉(interference)。從具有李黃楊修正的三維Gross-Pitaevskii (GP)方程理論開始,首先推導出相關的準一維二分量耦合方程式,藉以研究兩個相干(coherent)、空間分離的凝聚體的干涉。接著,數值求解耦合方程式得到兩個膨脹冷凝物的干涉結果。透過控制變因,一次只改變一個參數,我具體得出干涉波長如何受到李黃楊修正的效應的影響。我們的研究結果應對相關實驗具參考價值。
Recently Lee-Huang-Yang (LHY) correction has stimulated a lot of interest in ultracold atoms. In long-ranged dipolar systems, LHY correction can result in stable supersolid states, whereas in a two-component short-ranged system with attractive interspecies interaction, it could lead to a novel state of quantum droplets. In this thesis, I investigate the effect of LHY correction on the interference of two expanding Bose-Einstein condensates. Starting from a general three-dimensional theory of Gross–Pitaevskii equation with the LHY correction, I derive the coupled equations for the wave functions of two
coherent, spatially displaced condensates in a quasi-one-dimensional geometry. Solving the coupled equations enables the study of interference of the two expanding condensates along a particular direction. By varying the parameter one at a time, our simulations show explicitly how the wavelength of the interference depends on the effect of LHY correction. Our results should shed some light on the relevant experiments.
參考文獻:
[1] S.N. Bose, Plancks gesetz und Lichtquantenhypothese, Zeitschrift fur Physik,26,178-181(1924).
[2] A. Einstein, Quantentheorie des einatomigen idealen gases, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22, 261–267(1924).
[3] Ashley Hamer, The Double-Slit Experiment Cracked Reality Wide Open,(2019).
[4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell,Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).
[5] K. B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D. M. Kurn,and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969 (1995).
[6] Eric A.Cornell and Carl E.Wieman, Bose-Einstein-condensation in a dilute gas; The first 70 years and some recent experiments, Nobel Lecture (2001).
[7] C.J. Pethick,H. Smith, Bose-Eunstein Condensation in Dilute Gases, Cambridge University Press (2002).
[8] A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,Rev. Mod. Phys. 73, 307 (2001).
[9] E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars 34, BirkhaEuser (2005).
[10] L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, 13,451–454 (1961).
[11] E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo. Cimento,20,454–457 (1961).
[12] E.H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A,61,043602 (2000).
[13] L. Erd˝os, B. Schlein and H.T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. Math. 172,291–370 (2010).
[14] T.D. Lee, Kerson Huang, and C.N. Yang, Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev.106, 1135 (1957).
[15] Zhi-Huan Luo, Wei Pang, Bin Liu3, Yong-Yao Li, Boris A. Malomed, A new form of liquid matter: Quantum droplets, Frontiers of Physics, (2021).
[16] D.S. Petrov, Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture, Phys. Rev. Lett. 115,155302 (2015).
[17] M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997).
[18] J.I. Cirac, C.W. Gardiner, M. Naraschewski, P. Zoller, ibid, Continuous observation of interference fringes from Bose condensates, Physical Review A 54, R3714(R) (1996).
[19] Y. Castin and J. Dalibard, Relative phase of two Bose-Einstein condensates, Phys. Rev. A 55, 4330 (1997).
[20] J.E. Simsarian, J. Denschlag, Mark Edwards, Charles W. Clark, L. Deng, E.W. Hagley, K. Helmerson, S.L. Rolston, and W.D. Phillips ,Imaging the Phase of an Evolving Bose-Einstein Condensate Wave Function, Phys. Rev. Lett. 85,2040 (2000).
[21] M. Kozuma, L. Deng, E.W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S.L. Rolston,and W.D. Phillips, Coherent Splitting of Bose-Einstein Condensed Atoms with Optically Induced Bragg Diffraction, Phys. Rev. Lett. 82, 871 (1999).
[22] S.-K. Yip, Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate, Phys. Rev. Lett. 83, 4677 (1999).
[23] A. Burchianti C.D’Errico L. Marconi F. Minardi C. Fort and M. Modugno, Effect of interactions in the interference pattern of Bose Einstein condensates, Phys.Rev. A 102 ,043314 (2020).
[24] A. Burchianti, C.D’Errico, S. Rosi, A. Simoni, M. Modugno, C. Fort, and F. Minardi, Dual-species Bose-Einstein condensate of 41K and 87Rb in a hybrid trap, Phys. Rev. A 98, 063616 (2018).
[25] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,Rev. Mod. Phys.71,463 (1999).
[26] C.H. Hsueh,unpublished notes (2022).
[27] Bao W, Jaksch D and Markowich P A of Comput. Numerical solution of the Gross-Pitaevskii Equation for Bose-Einstein Condensation, Journal of Computational Physics. 187 318-342 (2003).
[28] R. Zamora-Zamora, G.A. Dom´nguez-Castro,C.Trallero-Giner, R. Paredes, and V. Romero-Roch, Validity of Gross-Pitaevskii solutions of harmonically confined BEC gases in reduced dimensions , Journal of Physics Communications (2019).