研究生: |
張方瑜 Chang, Fang-Yu |
---|---|
論文名稱: |
國高中生活科技教師對STEAM導向工程設計課程看法之研究 Technology Teachers’ Perceptions on STEAM-based Engineering Design Curriculum |
指導教授: |
簡佑宏
Chien, Yu-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 十二年國民基本教育 、STEAM 、生活科技教師 |
英文關鍵詞: | 12-year compulsory education, STEAM, living technology teacher |
DOI URL: | http://doi.org/10.6345/NTNU201900144 |
論文種類: | 學術論文 |
相關次數: | 點閱:281 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
STEAM教育的興起與十二年國民基本教育的實施影響了生活科技教師的課程設計方式,教師是實施課程的關鍵角色,瞭解教師的看法便可以更進一步的制訂相關的規劃,以利教育政策的落實。本研究旨在瞭解臺灣生活科技教師對於STEAM導向工程設計課程的看法,採用線上「生活科技教師對STEAM導向工程設計課程看法之調查問卷」為研究工具,調查135位生活科技教師,瞭解其對於STEAM導向工程設計課程的看法。研究結果發現(1)大部分的教師對於STEAM導向工程設計課程抱持正向態度,並願意在未來的課程上採用STEAM導向工程設計課程;(2)完全中學教師對於STEAM導向工程設計課程看法呈現兩極化;(3)教師們認為缺乏行政與財務支持會是未來實施課程時最主要的困難與挑戰,尤其對於任教單一年級的教師影響更強烈。依據研究結果與討論,本研究提出結論與建議為(1)教師對於STEAM導向工程設計課程持正向態度,表示國高中教師對於工程設計課程的銜接有一致的目標,且認同STEAM導向的課程設計;(2)完全中學教師任教年級包含國中與高中階段,部分教師抱持反對看法,表示於國中階段就納入STEAM導向工程設計不太適宜,但由於本研究樣本數不足,建議未來可針對完全中學教師進行更全面的研究;(3)教師認為缺乏學校行政與財務支持是最大的困難與挑戰,一方面確實生活科技非考試科目在學校權益容易受到影響,另一方面則是教師缺乏設計STEAM導向工程設計課程的知能,導致對於購買設備存在迷思,相關單位可以提供研習課程協助教師釐清與交流,有助於解決缺乏財務支持的問題。
The growth of STEAM education and the implementation of the 12-year compulsory education have influenced the curriculum design methods followed by “living technology” teachers, who also play a key role in implementing a curriculum. Hence, understanding teachers’ views will help devise the necessary plans to facilitate the implementation of education policies; the purpose of this study is to understand the views of living technology teachers in Taiwan regarding a STEAM-oriented engineering design curriculum. An online “questionnaire of living technology teachers’ views regarding a STEAM-oriented engineering design curriculum” was administered to 135 living technology teachers. The analysis of the survey responses revealed the following results. Firstly, most teachers held a positive attitude towards a STEAM-oriented engineering design curriculum and were willing to adopt it in their future courses. Second, full-grade high school teachers’ views on such a curriculum displayed polarization. Third, the teachers believed that a lack of administrative and financial support would be the greatest challenge in implementing future courses, especially for those teaching in a single grade. The research results and discussion lead to the following conclusions. First, the teachers held a positive attitude towards a STEAM-oriented engineering design curriculum, indicating that junior and senior high school teachers in Taiwan had consistent goals for the linkage of an engineering design curriculum and were favorable toward a STEAM-oriented curriculum design. Second, the teaching grades of full-grade high school teachers included junior high school and senior high school. Some teachers held divergent views, stating that it would not be appropriate to implement a STEAM-oriented engineering design curriculum in junior high school. However, due to the insufficient sample size in this study, it is suggested that a more comprehensive study be conducted on full-grade high school teachers in the future. Third, the teachers believed that a lack of school administrative and financial support would be the greatest challenge. While it is true that the status of living technology as a non-examination subject in schools would be affected, it is also true that teachers lack the knowledge and ability to devise a STEAM-oriented engineering design curriculum, leading to misconceptions about the purchase of equipment. It is proposed that relevant departments provide study courses to communicate accurate information to teachers and dispel their doubts by clarifying the actual situation, thereby helping resolve their perceptions regarding a lack of financial support.
一、中文部分
余鑑(2003)。工藝教育思想的流變。生活科技教育月刊,38(8),3-11。
李金泉(1993)。SPSS/PC+實務與應用統計分析。台北:松崗。
李隆盛(1998)。設計與科技。生活科技教育月刊,31(3),32。
李隆盛、吳正己、游光昭、周麗瑞、葉家棟、盧秋珍、沈章平(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。國家教育研究院整合型研究報告(NAER-102-06-A-1-02-09-1-18)。新北市:國家教育研究院。
林坤誼(2017)。應用3D列印技術於STEM專題學習活動知分析。中等教育,68(2),83-88。
林坤誼(2018)。STEM 教育在台灣推行的現況與省思。青年研究學報,21(1),1-9。
林坤誼(2018)。臺灣推動自造教育的省思與建議。臺灣教育評論月刊,7(2),6-9。
林珍瑩、黃雅莉(2006)。國中生活科技教師教學材料選用方式與考量因素研究一以台北市兩位資深教師為個案對象。生活科技教育,35(1),10-18。
林湧順(2018)。高中創客教育推廣經驗分享。臺灣教育評論月刊,7(2),44-56。
范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55,71-102。
張玉山(2016)。從創客教育培養創造力、實踐力、以及承受力。新北市教育季刊,18,14-15。
張玉山(2017)。STEAM Maker創客/自造教育的課程思維。中等教育,68(2),8-11。
張玉山(2018)。STEAM Maker跨域整合,實踐12年國教。臺灣教育評論月刊,7(2),1-5。
張玉山、李姿儀(2018)。STEAM之小學科技教學活動設計與實施-以抖抖外星人為例。科學研習月刊,57(8),41-50。
張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
張基成、陳怡靜(2018)。機器人跨領域STEM主題式統整課程與任務導向式教學的設計及評鑑。科學教育學刊,26(4),305-331。
教育部(2008)。國民中小學九年一貫課程綱要自然與生活科技學習領域。取自:https://cirn.moe.edu.tw/Upload/Website/9/ckfile/92/science.pdf
教育部(2009)。普通高級中學必修科目「生活科技」課程綱要。取自:https://www.k12ea.gov.tw/files/common_unit/a7285432-45bf-4371-b514-3eb12aff9871/doc/99%E6%99%AE%E9%80%9A%E9%AB%98%E4%B8%AD%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81.pdf
教育部(2014)。十二年國民基本教育課程綱要總綱。取自:https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_18543_581357_62438.pdf
教育部(2018)。十二年國民基本教育課程綱要技術型高級中等學校-科技領域。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/52/pta_18530_4795935_60115.pdf
教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校-科技領域。取自:https://www.naer.edu.tw/ezfiles/0/1000/attach/52/pta_18529_8438379_60115.pdf
教育部(2019)。十二年國民基本教育課程綱要綜合型高級中等學校-科技領域。取自:https://www.naer.edu.tw/ezfiles/0/1000/img/67/121476552.pdf
教育部國民中小學自造教育及科技輔導中心(2019)。科技中心活動成果。取自https://maker.nknu.edu.tw/Switch_act_resultall.php
教育部統計處(2019)。完全中學概況表。取自https://depart.moe.edu.tw/ED4500/cp.aspx?n=1B58E0B736635285&
莊孟蓉(2017)。創客教育在高中生活科技課程的實踐。中等教育,68(2),89-97。
陳玉芬和高靖岳(2017)。落實生活科技課程,推動自造教育—新北市立永和國民中學。中等教育,68(2),136-149。
陳冠吟(2015)。STEM 取向的科技教育-以鼠夾車為例。科技與人力教育季刊,2(1),63-81。
黃麗真、汪巧玲(2003)。「生活科技」名存實亡?生活科技教育月刊,36(4),8-11。
楊昌勳(2003)。生活科技教師的新思維。生活科技教育月刊,36(4),20-31。
楊昌勳(2003)。全民的科技素養教育。生活科技教育月刊,36(3),3-12。
葉柏維(2017)。STEAM理論融入高中科技實作活動設計―以手機號角音箱設計為例。科技與人力教育季刊,4(2),1-20。
葉柏維(2017)。STEAM理論融入國小科技實作的活動設計:橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。
蔡依帆、吳心昀(2014)。STEM 整合教學活動-空投救援物資。科技與人力教育季刊,1(1),40-54。
鄭家瑜(1977)。我國工藝教育簡史。中學工藝教育月刊,10(9),9-11。
簡佑宏、朱柏穎、簡爾君(2017)。STEAM取向之Maker教學。中等教育,68(2),12-28。
簡佑宏、張玉山、簡爾君(2016)。STEM 取向準工程課程設計:以二氧化碳賽車單元為例。科技與人力教育季刊,3(1),32-52。
二、外文部分
American College Test (2006). Ready for college and ready for work: Same or different? Iowa City, Iowa: Author.
Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
Cho, S. W. (2013). The Effect of Robots in Education based on STEAM. The Korea Robotics Society, 8(1), 58-65.
Connor, A. M., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education. The International Journal of Engineering Pedagogy, 5(2), 37-47.
DeVellis, R. F. (1998). Scale development: Theory and applications. CA: Sage.
Daugherty, M. K. (2009). The “T” and “E” in STEM. In ITEEA(Ed.), The overlooked STEM imperatives: Technology and engineering. Reston, VA:ITEEA.
Gerstein, J. (2016). Becoming a maker Educator. Techniques: connecting Education & Careers, 91(7), 14-19.
Herschbach, D. R., McPherson, W. H., & Latimer, T. G. (1976). Industrial arts: A Historical perspective. American Industrial Arts Association.
Hair, J., Anderson, R., Tatham, R. & Black, W. (1998). Multivariate data analysis. New York, Macmillan.
Han, H., & Lee, H. (2012). A study on the teachers’ perceptions and needs of STEAM education. Journal of Learner-Centered Curriculum and Instruction, 12(3), 573-603.
Hong, K. C., Shim, J. K. (2013). A study of STEAM education for elementary science subject with robots. Korea Association of Information Education, 17(1), 83-91.
International Technology Education Association (2000). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
International Technology Education Association (2005). Technological literacy for all: A rationale and structure for the study of technology. Reston, VA: Author
Rolling, J. H., Jr. (2016). Reinventing the STEAM Engine for Art + Design Education. Art Education, 69(4), 4-7.
Kim, Y., & Park, N. (2012). The effect of STEAM education on elementary school student’s creativity improvement. Computer Applications for Security, Control and System Engineering, 339, 115-121.
Kwon, S., Nam, D., & Lee, T. (2012). The effects of STEAM-based integrated subject study on elementary school students' creative personality. Journal of the Korea Society of Computer and Information, 17(2), 79-86.
Lewis, T. (2004). A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education, 16(1), 21-39.
Lin, K. Y., Lee, L. S., Chang, L. T., & Tsai, L. C. (2009). A study of a curriculum of pre-engineering technology education in Taiwan. World Transactions on Engineering and Technology Education, 7(2), 186-191.
Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552.
Lim, C. H., & Oh, B. J. (2015). Elementary pre-service teachers and in-service teachers’ perceptions and demands on STEAM education. Journal of Korean Society of Earth Science Education, 8(1), 1-11.
Ministry of Education (2011). STEAM, the educational policy for 2011 year. Seoul, South Korea: Author.
Milkova, L., Crossman, C., Wiles, S., & Allen, T. (2012). Engagement and skill development in biology students through analysis of art. CBE Life Sciences Education, 12(4), 687-700.
Mote, C., Strelecki, K., & Johnson, K. (2014). Cultivating high-level organizational engagement to promote novel learning experiences in STEAM. The STEAM Journal, 1(2), 18.
National Center for Education Statistics (2003). International outcomes of learning in mathematics literacy and problem solving: PISA 2003 results from the US perspective. Boston, MA: Author.
National Academy of Engineering, & National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press.
Park, H. J., Byun, S. Y., Sim, J. H., Han, H. S., & Baek, Y. S. (2016). Teachers’ perceptions and practices of STEAM education in South Korea. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1739-1753.
Quigley, C. F., & Herro, D. (2016). Finding the joy in the unknown: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426.
Quigley, C. F., Herro,D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117, 1-12.
Ryan, M. P., & Aaron, D. K. (2016). Meaningful makers: Stuff, sharing, and connection in STEAM curriculum. Art Education, 70(1), 36-43.
Shin, Y., & Han, S. (2011). A study of the elementary school teachers` perception in STEAM (Science, Technology, Engineering, Arts, Mathematics) education. Journal of Korea Society of Elementary Science Education, 30(4), 514-523.
Shin, J. H. (2013). Survey of primary & secondary school teachers’ recognition about STEAM convergence education. Korean Journal of the Learning Sciences, 7(2), 29-53.
Taylor, B. (2016). Evaluating the benefit of the maker movement in K-12 STEM education. Electronic International Journal of Education, Arts, and Science, 2, 1-22.
Wells, J. G. (2016). PIRPOSAL model of integrative STEM education: Conceptual and pedagogical framework for classroom implementation. The Technology and Engineering Teacher, 75(6), 12-19.
Zschenderlein, H. (2011). STEM to STEAM: Developing new frameworks for art/science pedagogy. National Science Foundation, Providence, Rhode Island, USA.