研究生: |
洪靖淵 Hong, Jing-Yuan |
---|---|
論文名稱: |
不同晨間進食狀態下運動對體重過重/肥胖中年人之認知功能影響 Impact of Feeding Status and Exercise Intensity on Cognitive Performance in Adults with Overweight/Obesity |
指導教授: |
陳勇志
Chen, Yung-Chih |
口試委員: |
廖翊宏
Liao, Yi-Hung 洪聰敏 Hung, Tsung-Min 陳勇志 Chen, Yung-Chih |
口試日期: | 2022/01/24 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 認知功能 、執行功能 、隔夜禁食 、中年人 |
英文關鍵詞: | Cognition, Executive function, Fasting, Middle-aged adults |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200455 |
論文種類: | 學術論文 |
相關次數: | 點閱:216 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
問題背景:運動強度與早餐進食與否皆能夠影響認知功能,但目前尚不清楚兩者交互作用下的影響。目的:探討有無早餐狀態下進行高 (70% 最大攝氧量) 和中低強度(50% 最大攝氧量)的連續 4 公里有氧運動對體重過重及肥胖健康中年人認知執行功能的影響。方法: 12 名(年齡:40 ± 7 歲、BMI:30 ± 3 kg/m2、腰圍:107 ± 7 cm) 的實驗參與者,經12–14 小時隔夜禁食後,隨機分派至四次實驗;晨間進食下高強度運動(Meal-High)、晨間進食下中低強度運動(Meal-Low)、無晨間進食下高強度運動(Fasted-High)、無晨間進食下中低強度運動(Fasted-Low),電腦化認知功能採用旁側干擾測驗(Flanker task)以及任務轉換測驗(Task switching),於基礎值、運動前和運動後兩小時測驗。結果:研究發現,旁側干擾測驗及任務轉換測驗不論在回應正確率和反應時間,四組間皆無顯著差異 (all, p > 0.05)。以進食狀態 (Fasted and Meal) 及運動強度 (Low and High intensity) 分類資料進行比較,有早餐組一般型任務轉換測驗反應時間快於無早餐組 (p = 0.009);有早餐組混合型任務轉換測驗 ( p = 0.038) 和旁側干擾測驗一致情境 (p = 0.037) 回應準確率優於無早餐組;低強度組混合型任務轉換測驗回應準確率優於高強度組 (p = 0.028)。結論:肥胖、過重中年人進食早餐後進行運動相較於不吃早餐有更佳的執行功能表現;不論進食狀態,中低強度運動相較於高強度運動對認知表現助益較高。
Background: Breakfast consumption and exercise both have been shown to acutely influence cognitive performances but it is still unclear whether cognition could be affected by the interactive effects of different exercise intensity with and without breakfast intake. Purposes: To investigate the acute effects of high- and low-to-moderate intensity (70% versus 50% of maximum oxygen uptake) exercise with(out) breakfast consumption on cognition in healthy middle-aged adults with central overweight/obesity. Methods: Participants with overweight/obesity completed four trials in a randomized, cross-over fashion; Fasted Low-to-moderate intensity (FL), Meal Low-to-moderate intensity (ML), Fasted High-intensity (FH) and Meal High-intensity (MH). Computerized cognitive tasks included general and mixed task-switching tasks and flanker task were tested at baseline, before exercise and two hours after exercise. Results: There was no difference in any of cognitive performance (i.e., accuracy and reaction time in general and mixed task-switching tasks and flanker task) between 4 trials (all, p > 0.05). Whilst comparing feeding status and exercise intensity, the results showed that the reaction time of the general task-switching test in the group with breakfast was faster than that in the group without breakfast (p = 0.009); the response accuracy of the mixed task-switching (p = 0.038) and flank task (p = 0.037) in the group with breakfast was faster than that in the group without breakfast; The low-intensity group had better response accuracy on the mixed task-switching test than the high-intensity group (p = 0.028). Conclusion: Obese and overweight middle-aged people obtain better executive function performance while consuming breakfast prior to exercise than without breakfast. In the exercise intensity option, low-to-moderate intensity generates better than high intensity.
Ackerman, D. J., &Friedman-Krauss, A. H. (2017). Preschoolers’ Executive Function: Importance, Contributors, Research Needs and Assessment Options. ETS Research Report Series, 2017(1), 1–24. doi.org/10.1002/ets2.12148
Ammar, A., Trabelsi, K., Boukhris, O., Bouaziz, B., Müller, P., M Glenn, J., …Hökelmann, A. (2020). Effects of Polyphenol-Rich Interventions on Cognition and Brain Health in Healthy Young and Middle-Aged Adults: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 9(5), 1598. doi.org/10.3390/jcm9051598
Arnsten, A. F. T. (1997). Catecholamine regulation of the prefrontal cortex. Journal of Psychopharmacology, 11(2), 151–162.
Badhwar, R., Kaur, G., Popli, H., Yadav, D., &Buttar, H. S. (2020). Pathophysiology of Obesity-Related Non-communicable Chronic Diseases and Advancements in Preventive Strategies. In Pathophysiology of Obesity-Induced Health Complications (pp. 317–340). Springer. doi.org/10.1007/978-3-030-35358-2_19
Benau, E. M., Orloff, N. C., Janke, E. A., Serpell, L., &Timko, C. A. (2014). A systematic review of the effects of experimental fasting on cognition. Appetite, 77, 52–61.
Beydoun, M. A., Beydoun, H. A., Gamaldo, A. A., Teel, A., Zonderman, A. B., &Wang, Y. (2014). Epidemiologic studies of modifiable factors associated with cognition and dementia: Systematic review and meta-analysis. BMC Public Health, 14(1), 643. doi.org/10.1186/1471-2458-14-643
Blair, Clancy; Ursache, A., Blair, C., &Ursache, A. (2011). A bidirectional model of executive functions and self-regulation. Handbook of Self-Regulation: Research, Theory, and Applications, 2, 300–320.
Blair, C., Zelazo, P. D., &Greenberg, M. T. (2005). The measurement of executive function in early childhood. Developmental Neuropsychology, 28(2), 561–571. doi.org/10.1207/s15326942dn2802_1
Boat, R., &Cooper, S. B. (2019). Self-Control and Exercise: A Review of the Bi-Directional Relationship. Brain Plasticity, 5, 97–104. doi.org/10.3233/BPL-190082
Boksem, M. A. S., Meijman, T. F., &Lorist, M. M. (2005). Effects of mental fatigue on attention: An ERP study. Cognitive Brain Research, 25(1), 107–116. doi.org/doi.org/10.1016/j.cogbrainres.2005.04.011
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98.
Borror, A. (2017). Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Medical Hypotheses, 106, 1–5. doi.org/10.1016/j.mehy.2017.06.024
Bray, G. A., Kim, K. K., &Wilding, J. P. H. (2017). Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obesity Reviews, 18(7), 715–723. doi.org/10.1111/obr.12551
Bush, G., Luu, P., &Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222. doi.org/doi.org/10.1016/S1364-6613(00)01483-2
Catoira, N. P., Tapajóz, F., Allegri, R. F., Lajfer, J., Rodríguez Cámara, M. J., Iturry, M. L., &Castaño, G. O. (2016). Obesity, metabolic profile, and inhibition failure: Young women under scrutiny. Physiology & Behavior, 157, 87–93. doi.org/doi.org/10.1016/j.physbeh.2016.01.040
Chan, J. S. Y., Liu, G., Liang, D., Deng, K., Wu, J., &Yan, J. H. (2019). Special Issue – Therapeutic Benefits of Physical Activity for Mood: A Systematic Review on the Effects of Exercise Intensity, Duration, and Modality. The Journal of Psychology, 153(1), 102–125. doi.org/10.1080/00223980.2018.1470487
Chandrasekaran, B., Pesola, A. J., Rao, C. R., &Arumugam, A. (2021). Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskeletal Disorders, 22(1), 274. doi.org/10.1186/s12891-021-04136-5
Chang, Y. K., Labban, J. D., Gapin, J. I., &Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. doi.org/10.1016/j.brainres.2012.02.068
Chang, Yu Kai, Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., &Etnier, J. L. (2015). Dose-response relation between exercise duration and cognition. Medicine and Science in Sports and Exercise, 47(1), 159–165. doi.org/10.1249/MSS.0000000000000383
Chung, S. T., Ha, J., Onuzuruike, A. U., Kasturi, K., Galvan-De La Cruz, M., Bingham, B. A., …Sumner, A. E. (2017). Time to glucose peak during an oral glucose tolerance test identifies prediabetes risk. Clinical Endocrinology, 87(5), 484–491. doi.org/doi.org/10.1111/cen.13416
Coelho, F. G. de M., Gobbi, S., Andreatto, C. A. A., Corazza, D. I., Pedroso, R. V., &Santos-Galduróz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Archives of Gerontology and Geriatrics, 56(1), 10–15. doi.org/10.1016/j.archger.2012.06.003
Cohen-Manheim, I., Sinnreich, R., Doniger, G. M., Simon, E. S., Pinchas-Mizrachi, R., &Kark, J. D. (2018). Fasting plasma glucose in young adults free of diabetes is associated with cognitive function in midlife. European Journal of Public Health, 28(3), 496–503. doi.org/10.1093/eurpub/ckx194
Cournot, M., Marquié, J. C., Ansiau, D., Martinaud, C., Fonds, H., Ferrières, J., &Ruidavets, J. B. (2006). Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 67(7), 1208–1214. doi.org/10.1212/01.wnl.0000238082.13860.50
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. doi.org/10.1146/annurev-psych-113011-143750
Dreisbach, G. (2006). How positive affect modulates cognitive control: The costs and benefits of reduced maintenance capability. Brain and Cognition, 60(1), 11–19.
Edinburgh, R. M., Hengist, A., Smith, H. A., Travers, R. L., Koumanov, F., Betts, J. A., …Gonzalez, J. T. (2018). Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. American Journal of Physiology - Endocrinology and Metabolism, 315(5), E1062–E1074. doi.org/10.1152/ajpendo.00163.2018
Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., …Powell, K. E. (2019). Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Medicine and Science in Sports and Exercise, 51(6), 1242–1251. doi.org/10.1249/MSS.0000000000001936
Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. doi.org/10.3758/BF03203267
Fiani, B., Zhu, L., Musch, B. L., Briceno, S., Andel, R., Sadeq, N., &Ansari, A. Z. (2021). The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant Effects on Cognitive Function. Cureus, 13(5), e15032. doi.org/10.7759/cureus.15032
Galioto, R., &Spitznagel, M. B. (2016). The effects of breakfast and breakfast composition on cognition in adults. Advances in Nutrition, 7(3), 576S-589S. doi.org/10.3945/an.115.010231
Gibney, M. J., Barr, S. I., Bellisle, F., Drewnowski, A., Fagt, S., Livingstone, B., …Hopkins, S. (2018). Breakfast in human nutrition: The international breakfast research initiative. Nutrients, 10(5), 559. doi.org/10.3390/nu10050559
Heni, M., Kullmann, S., Ketterer, C., Guthoff, M., Bayer, M., Staiger, H., …Fritsche, A. (2014). Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Human Brain Mapping, 35(3), 918–928. doi.org/10.1002/hbm.22223
Hüttermann, S., &Memmert, D. (2014). Does the inverted-U function disappear in expert athletes? An analysis of the attentional behavior under physical exercise of athletes and non-athletes. Physiology & Behavior, 131, 87–92. doi.org/doi.org/10.1016/j.physbeh.2014.04.020
Hyafil, A., Summerfield, C., &Koechlin, E. (2009). Two mechanisms for task switching in the prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(16), 5135–5142. doi.org/10.1523/JNEUROSCI.2828-08.2009
Jakubowicz, D., Wainstein, J., Landau, Z., Raz, I., Ahren, B., Chapnik, N., …Froy, O. (2017). Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care, 40(11), 1573 LP – 1579. doi.org/10.2337/dc16-2753
Kaur, S., Gonzales, M. M., Tarumi, T., Villalpando, A., Alkatan, M., Pyron, M., …Haley, A. P. (2016). Serum brain-derived neurotrophic factor mediates the relationship between abdominal adiposity and executive function in middle age. Journal of the International Neuropsychological Society, 22(5), 493–500. doi.org/10.1017/S1355617716000230
Komiyama, T., Sudo, M., Okuda, N., Yasuno, T., Kiyonaga, A., Tanaka, H., …Ando, S. (2016). Cognitive function at rest and during exercise following breakfast omission. Physiology and Behavior, 157, 178–184. doi.org/10.1016/j.physbeh.2016.02.013
Kotopoulea-Nikolaidi, M., Watkins, E., &Giannopoulou, I. (2019). Effects of high carbohydrate vs. High protein pre-exercise feedings on psychophysiological responses to high intensity interval exercise in overweight perimenopausal women. Frontiers in Nutrition, 5, 141. doi.org/10.3389/fnut.2018.00141
Kullmann, S., Heni, M., Hallschmid, M., Fritsche, A., Preissl, H., &Häring, H.-U. (2016). Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiological Reviews, 96(4), 1169–1209. doi.org/10.1152/physrev.00032.2015
Lamport, Daniel J., Lawton, C. L., Mansfield, M. W., Moulin, C. A. J., &Dye, L. (2014). Type 2 diabetes and impaired glucose tolerance are associated with word memory source monitoring recollection deficits but not simple recognition familiarity deficits following water, low glycaemic load, and high glycaemic load breakfasts. Physiology and Behavior, 124, 54–60. doi.org/10.1016/j.physbeh.2013.10.033
Lamport, Daniel Joseph, Hoyle, E., Lawton, C. L., Mansfield, M. W., &Dye, L. (2011). Evidence for a second meal cognitive effect: Glycaemic responses to high and low glycaemic index evening meals are associated with cognition the following morning. Nutritional Neuroscience, 14(2), 66–71. doi.org/10.1179/1476830511Y.0000000002
Leckie, R. L., Oberlin, L. E., Voss, M. W., Prakash, R. S., Szabo-Reed, A., Chaddock-Heyman, L., …Erickson, K. I. (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Frontiers in Human Neuroscience, 8(DEC). doi.org/10.3389/fnhum.2014.00985
Liu, Z., Zaid, M., Hisamatsu, T., Tanaka, S., Fujiyoshi, A., Miyagawa, N., …Ueshima, H. (2020). Elevated fasting blood glucose levels are associated with lower cognitive function, with a threshold in non-diabetic individuals: A population-based study. Journal of Epidemiology, 30(3), 121–127. doi.org/10.2188/jea.JE20180193
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., …Mukadam, N. (2017). Dementia prevention, intervention, and care. The Lancet, 390(10113), 2673–2734. doi.org/10.1016/S0140-6736(17)31363-6
Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., &Virchow, J. C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26(1), 115–123. doi.org/10.1016/j.neurobiolaging.2004.03.002
Ma, X., Chen, Q., Pu, Y., Guo, M., Jiang, Z., Huang, W., …Xu, Y. (2020). Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obesity Research and Clinical Practice, 14(1), 1–8. doi.org/10.1016/j.orcp.2019.12.002
Marosi, K., &Mattson, M. P. (2014). BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology and Metabolism, 25(2), 89–98. doi.org/10.1016/j.tem.2013.10.006
Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M., &Cheng, A. (2018). Intermittent metabolic switching, neuroplasticity and brain health. Nature Reviews. Neuroscience, 19(2), 63–80. doi.org/10.1038/nrn.2017.156
McMorris, T., &Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338–351. doi.org/10.1016/j.bandc.2012.09.001
Meeusen, R., VanCutsem, J., &Roelands, B. (2020). Endurance exercise-induced and mental fatigue and the brain. Experimental Physiology. doi.org/10.1113/EP088186
Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., &Özyurt, J. (2019). Intensity-Dependent Effects of Acute Exercise on Executive Function. Neural Plasticity, 2019, 8608317. doi.org/10.1155/2019/8608317
Mitchell, R. L. C., &Phillips, L. H. (2007). The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia, 45(4), 617–629. doi.org/doi.org/10.1016/j.neuropsychologia.2006.06.030
Mohammed, A.-R., &Lyusin, D. (2021). The effect of an induced negative mood on the updating of affective information. Cognitive Processing. doi.org/10.1007/s10339-021-01060-3
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. doi.org/10.1016/S1364-6613(03)00028-7
Moore, R. D., Romine, M. W., O’Connor, P. J., &Tomporowski, P. D. (2012). The influence of exercise-induced fatigue on cognitive function. Journal of Sports Sciences, 30(9), 841–850. doi.org/10.1080/02640414.2012.675083
Newman, J. C., &Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism, 25(1), 42–52. doi.org/10.1016/j.tem.2013.09.002
Nilsson, A., Radeborg, K., &Björck, I. (2009). Effects of differences in postprandial glycaemia on cognitive functions in healthy middle-aged subjects. European Journal of Clinical Nutrition, 63(1), 113–120. doi.org/10.1038/sj.ejcn.1602900
Nilsson, A., Radeborg, K., &Björck, I. (2012). Effects on cognitive performance of modulating the postprandial blood glucose profile at breakfast. European Journal of Clinical Nutrition, 66(9), 1039–1043. doi.org/10.1038/ejcn.2012.80
O’Donovan, G., Stamatakis, E., Stensel, D. J., &Hamer, M. (2018). The Importance of Vigorous-Intensity Leisure-Time Physical Activity in Reducing Cardiovascular Disease Mortality Risk in the Obese. Mayo Clinic Proceedings, 93(8), 1096–1103. Elsevier. doi.org/10.1016/j.mayocp.2018.01.016
Page, K. A., Chan, O., Arora, J., Belfort-Deaguiar, R., Dzuira, J., Roehmholdt, B., …Sherwin, R. S. (2013). Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA, 309(1), 63–70. doi.org/10.1001/jama.2012.116975
Paoli, A., Tinsley, G., Bianco, A., &Moro, T. (2019). The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients, 11(4), 719. doi.org/10.3390/nu11040719
Paul, G. L., Rokusek, J. T., Dykstra, G. L., Boileau, R. A., &Layman, D. K. (1996). Preexercise meal composition alters plasma large neutral amino acid responses during exercise and recovery. American Journal of Clinical Nutrition, 64(5), 778–786. doi.org/10.1093/ajcn/64.5.778
Pedersen, M., Pedersen, K. K., Bruunsgaard, H., Krabbe, K. S., Thomsen, C., Færch, K., …Mortensen, E. L. (2012). Cognitive Functions in Middle Aged Individuals Are Related to Metabolic Disturbances and Aerobic Capacity: A Cross-Sectional Study. PLoS ONE, 7(12), e51132. doi.org/10.1371/journal.pone.0051132
Phillips, L. H., Bull, R., Adams, E., &Fraser, L. (2002). Positive mood and executive function: Evidence from Stroop and fluency tasks. Emotion, Vol. 2, pp. 12–22. Phillips, Louise H.: U Aberdeen, Dept of Psychology, Aberdeen, Scotland, AB24 2UB, louise.phillips@abdn.ac.uk: American Psychological Association. doi.org/10.1037/1528-3542.2.1.12
Pillai, A., Bruno, D., Sarreal, A. S., Hernando, R. T., Saint-Louis, L. A., Nierenberg, J., …Buckley, P. F. (2012). Plasma BDNF levels vary in relation to body weight in females. PLoS ONE, 7(7), e39358. doi.org/10.1371/journal.pone.0039358
Ralston, J., Brinsden, H., Buse, K., Candeias, V., Caterson, I., Hassell, T., …Woodward, E. (2018). Time for a new obesity narrative. The Lancet, 392(10156), 1384–1386. doi.org/10.1016/S0140-6736(18)32537-6
Sanchez-Aguadero, N., Recio-Rodriguez, J. I., Patino-Alonso, M. C., Mora-Simon, S., Alonso-Dominguez, R., Sanchez-Salgado, B., …Garcia-Ortiz, L. (2020). Postprandial effects of breakfast glycaemic index on cognitive performance among young, healthy adults: A crossover clinical trial. Nutritional Neuroscience, 23(1), 1–7. doi.org/10.1080/1028415X.2018.1461459
Santos, H. O., Genario, R., Macedo, R. C. O., Pareek, M., &Tinsley, G. M. (2020). Association of breakfast skipping with cardiovascular outcomes and cardiometabolic risk factors: an updated review of clinical evidence. Critical Reviews in Food Science and Nutrition, 1–9. doi.org/10.1080/10408398.2020.1819768
Seamans, J. K., &Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74(1), 1–58.
Si, J., Zhang, H., Zhu, L., &Chen, A. (2021). The relationship between overweight/obesity and executive control in college students: The mediating effect of BDNF and 5-HT. Life, 11(4), 313. doi.org/10.3390/life11040313
Smith, E., Hay, P., Campbell, L., &Trollor, J. N. (2011). A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obesity Reviews, 12(9), 740–755. doi.org/10.1111/j.1467-789X.2011.00920.x
Solianik, R., &Sujeta, A. (2018). Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women. Behavioural Brain Research, 338, 166–172. doi.org/10.1016/j.bbr.2017.10.028
Solianik, R., Sujeta, A., Terentjeviene, A., &Skurvydas, A. (2016). Effect of 48h fasting on autonomic function, brain activity, cognition, and mood in amateur weight lifters. BioMed Research International, 2016, 1503956. doi.org/10.1155/2016/1503956
Sun, M. K. (2018). Executive functioning: Perspectives on neurotrophic activity and pharmacology. Behavioural Pharmacology, 29(7), 592–604. doi.org/10.1097/FBP.0000000000000427
Sünram-Lea, S. I., &Owen, L. (2017). The impact of diet-based glycaemic response and glucose regulation on cognition: Evidence across the lifespan. Proceedings of the Nutrition Society, 76(4), 466–477. doi.org/10.1017/S0029665117000829
Thomas, S. N., Schroeder, T., Secher, N. H., &Mitchell, J. H. (1989). Cerebral blood flow during submaximal and maximal dynamic exercise in humans. Journal of Applied Physiology, 67(2), 744–748. doi.org/10.1152/jappl.1989.67.2.744
Tsukamoto, H., Ishibashi, A., Marley, C. J., Shinohara, Y., Ando, S., Bailey, D. M., …Ogoh, S. (2021). Plasma brain-derived neurotrophic factor and dynamic cerebral autoregulation in acute response to glycemic control following breakfast in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 320(1), R69–R79. doi.org/10.1152/AJPREGU.00059.2020
Vaynman, S., Ying, Z., &Gomez-Pinilla, F. (2007). The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience, 144(3), 825–833. doi.org/10.1016/j.neuroscience.2006.10.005
Veasey, R. C., Gonzalez, J. T., Kennedy, D. O., Haskell, C. F., &Stevenson, E. J. (2013). Breakfast consumption and exercise interact to affect cognitive performance and mood later in the day. a randomized controlled trial. Appetite, 68, 38–44. doi.org/10.1016/j.appet.2013.04.011
Veasey, Rachel C., Haskell-Ramsay, C. F., Kennedy, D. O., Tiplady, B., &Stevenson, E. J. (2015). The effect of breakfast prior to morning exercise on cognitive performance, mood and appetite later in the day in habitually active women. Nutrients, 7(7), 5712–5732. doi.org/10.3390/nu7075250
Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Goldstein, R. Z., Alia-Klein, N., …Pradhan, K. (2009). Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring, Md.), 17(1), 60–65. doi.org/10.1038/oby.2008.469
WHO Expert Consultation. (2011). Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation, Geneva, 8-11 December 2008 (pp. 8–11). pp. 8–11. Geneva: World Health Organization. Retrieved from apps.who.int/iris/handle/10665/44583
Wolff, W., Sieber, V., Bieleke, M., &Englert, C. (2021). Task duration and task order do not matter: no effect on self-control performance. Psychological Research, 85(1), 397–407. doi.org/10.1007/s00426-019-01230-1
Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., …Spiegelman, B. M. (2013). Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metabolism, 18(5), 649–659. doi.org/doi.org/10.1016/j.cmet.2013.09.008
Zigmond, A. S., &Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. doi.org/10.1111/j.1600-0447.1983.tb09716.x