簡易檢索 / 詳目顯示

研究生: 董彥臣
論文名稱: 以超音波特性評估6061-T651鋁合金冷作率對機械性質影響之研究
指導教授: 周長彬
Zhou, Chang-Bin
林靜
Lin, Ching
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 超音波縱波音速衰減係數蒲松氏比冷滾軋
論文種類: 學術論文
相關次數: 點閱:344下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以超音波縱波音速及衰減係數評估6061-T651鋁合金經過冷滾軋加工後材料之機械性質。其目的是在建立以超音波非破壞檢測的方式,來評估材料經冷加工過後的彈性係數及硬度等性質,並探討超音波在材料中的特性與材料機械性質的關係。經由實驗結果得知,在6061-T651鋁合金經過冷加工後,超音波縱波音速及衰減係數會隨著冷作率的增加而減少,超音波縱波音速會隨著材料彈性係數的增加而減小,會隨著蒲松氏比的增加而提高。材料硬度亦會隨著超音波縱波音速及衰減係數增加而減小。在以超音波縱波音速及衰減係數評估6061- T651鋁合金材料時,以超音波縱波音速評估材料機械性質較為精確,而以超音波衰減係數評估材料機械性質離散性較高,因此在檢測效率上以超音波縱波音速來評估機械性質較佳。 ABSTRACT In this research, the mechanical properties of the material, which is processed after the cold rolling of 6061-T651 aluminum alloys, are evaluated by ultrasonic longitudinal wave velocity and attenuation coefficient .The purpose is to establish the estimation of elastic modulus and hardness after cold working through ultrasonic nondestructive testing and to discuss the relations between ultrasonic characteristics and mechanical properties in the 6061-T651 aluminum alloy. The results reveal that the ultrasonic longitudinal wave velocity and attenuation coefficient vary inversely with cold working rate and that longitudinal wave velocity decreases with increasing elastic modulus and increases with increasing Poisson’s ratio. Hardness of alloy decreases when longitudinal wave velocity and attenuation coefficient increase. The mechanical properties can be measured more accurately by ultrasonic longitudinal wave velocity than by attenuation coefficient when 6061-T651 aluminum alloy is evaluated. Besides, the estimation of mechanical properties is more dispersed through ultrasonic attenuation coefficient. In conclusion, ultrasonic longitudinal wave velocity has the higher testing efficiency in measuring the mechanical properties.

    In this research, the mechanical properties of the material, which is
    processed after the cold rolling of 6061-T651 aluminum alloys, are evaluated
    by ultrasonic longitudinal wave velocity and attenuation coefficient .The
    purpose is to establish the estimation of elastic modulus and hardness after
    cold working through ultrasonic nondestructive testing and to discuss the
    relations between ultrasonic characteristics and mechanical properties in the
    6061-T651 aluminum alloy.
      The results reveal that the ultrasonic longitudinal wave velocity and
    attenuation coefficient vary inversely with cold working rate and that
    longitudinal wave velocity decreases with increasing elastic modulus and
    increases with increasing Poisson’s ratio. Hardness of alloy decreases when
    longitudinal wave velocity and attenuation coefficient increase.
      The mechanical properties can be measured more accurately by ultrasonic
    longitudinal wave velocity than by attenuation coefficient when 6061-T651
    aluminum alloy is evaluated. Besides, the estimation of mechanical properties
    is more dispersed through ultrasonic attenuation coefficient. In conclusion,
    ultrasonic longitudinal wave velocity has the higher testing efficiency in
    measuring the mechanical properties.

    第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 4 1-3 研究目的 5 1-4 研究範圍與限制  5 第二章 文獻探討   7 2-1 鋁合金材料    8 2-1-1 6061鋁合金材料之特性  11 2-1-2 鋁合金材料之冷加工   13 2-1-3 鋁合金材料之熱處理   15 2-2 超音波理論    19 2-2-1 超音波之種類  20 2-2-2 超音波之反射(reflection)、折射(refraction)與波形轉換  25 2-2-3 超音波之繞射(diffraction)與散射(scattering)  27 2-2-4 超音波之音場  29 2-2-5 超音波之衰減  33 2-2-6 超音波衰減測定理論   34 2-2-7 超音波之音速測定理論  37 第三章 實驗方法與步驟    39 3-1 實驗材料 39 3-2 材料之冷加工   41 3-3 超音波檢測    43 3-4 材料組織檢測   45 3-5 機械性質檢測   46 第四章 結果與討論  49 4-1 冷作率與機械性質 49 4-1-1 冷作率對彈性係數之影響 51 4-1-2 冷作率對硬度之影響   55 4-2 超音波縱波音速與機械性質之關係  56 4-2-1 超音波縱波音速與彈性係數之關係 58 4-2-2 超音波縱波音速與硬度之關係   60 4-3 超音波衰減係數與機械性質之關係  61 4-3-1 超音波衰減係數與彈性係數之關係 63 4-3-2 超音波衰減係數與硬度之關係   65 4-4 超音波特性與金相組織之觀察    66 第五章 結論與建議  71 5-1 結論   71 5-2 建議   72 參考文獻   73

    1.林世昌,“以超音波衰減檢測低碳鋼的晶粒大小及機械性質”,檢測技術,七卷三期
    ,1989年,pp.50-60。
    2.Sayer C.M., “Ultrasonic Velocities in anisotropic polycrystalline aggregates
    ”, J.Phys.D:Appl.Phys., 15, pp2157-2167, 1982.
    3.Allen A.J., Hutchings M.T., Sayers C.M., Allen D.R., Smith R.L., “Use of
    neutron diffraction texture measurements to establish a model for calculation
    of ultrasonic velocities in highly oriented austenitic weld material”, J.Appl.
    Phys., 54, pp555-560, 1983.
    4.金重勳,“熱處理”,復文書局,民國88年,pp.482-485。
    5.陳憲雄,“鋁合金資料集”,啟學出版社,民國78年,pp90-91。
    6.楊景元,“冷加工對鋁合金1050銲件機械性質影響之研究”,國立台灣師範大學工業教
    育研究所碩士論文,88年6月。
    7.ASM Handbook , “Property and selection:Nonferrous Alloys and Pure Metals”,
    ASM,Vol.2 9th pp.1-236, 1979.
    8.許源泉,“鍛造學理論與實習”,三民書局,民國79年,pp.4-5。
    9.Zone-Ching Lin, Y.C.Cheng, “An Investigation of Effect of Speeds of Work
    Rolls on Strip”, Journal of Engineering Materials and Technology, vol.117,
    pp341-345, 1995.
    10.M.Zehetbauer, W.Pfeiler, J.Schrank, “Microhardness and Yield Stress of
    Cold Rolled Pure Aluminum up to Very High Deformation”, scrip METALLURGICA,
    vol.17, pp221-226, 1983.
    11.G.Mima, T.Yamane, “Effect of Repeated Cold-Rolling on Recrystallization of
    99.999﹪Al”, Journal of Materials Science Letters 6, pp95-96, 1987.
    12.Liu Yi-Lin, L.Delaey, E.Aernoudt, O.Arkens, “Substructure Development and
    Mechanical Properties in Cold Rolling Aluminum Alloy 3004”, Materials Science
    and Engineering, 96, pp125-137, 1987.
    13.D.J.Lloyd, D.Kenny, “The Structure and Properties of Some Heavily Cold
    Worked Aluminum Alloy”, scrip METALLURGICA, vol.28, pp639-649, 1980.
    14.B.Major, “Texture, Microstructure,and Stored Energy Inhomogeneity in Cold
    Rolled Commerical Purity Aluminum and Copper”, Materials Science and
    Technology, vol.8, pp510-515, 1992.
    15.Julio Cesar Cuyas, “Inhomogeneity of Rolling and Annealing Texture in
    Aluminum”, Light Metal Age, pp12-14, 1988.
    16.譚安宏、簡仁德譯,“物理冶金”,高立圖書公司,民國79年,pp.113-151。
    17.楊德鈞,“鋁合金細晶粒組織控制之製程研究”,國立中央大學機械工程研究所碩士論
    文,民國87年6月,pp.5-9。
    18.劉一貫、周顯光譯,“高級物理學 下冊”,香港:導師出版社,1993年,pp223-290。
    19.黃茂坤,“工業用超音波檢測實務彙編”,中船公司高雄總廠訓練中心,民國85年
    ,pp1-37。
    20.曹松南,“超音波波速與電廠鍋爐管金相特徵之關係”,國立台灣工業技術學院機械工
    程技術研究所碩士論文,民國85年7月,pp11-41。
    21.J.Krautkrämer, H.Krautkrämer, “Ultrasonic Testing of Materials
    ”, Springer-Verlag, Berlin, pp1-40, 167-170, 1990.
    22.陳永增、鄧惠源,“非破壞檢測”,全華科技圖書公司,民國88年,pp4-1—4-77。
    23.ASNT handbook, “Non-destructive Testing Handbook Ultrasonic Testing”,
    vol. 7, 2th Ed, pp830-850, 1991.
    24.R.L.Smith, “Ultrasonic Materials Characterization”, NDT International,
    vol. 20, pp145-151, 1987.
    25.O.Prabhaker, R.Ambardar, Heng Keng Wah , “Percentage Porosity Measurement
    by A Through Transmission Ultrasonic Technique”, INSIGHT, vol. 39, No. 2,
    pp100-103, 1997.
    26.R.Ambardar, M.T.Muthu, S.D.Pathak, O.Prabhaker, “Effect of Porosity, Pore
    Diameter and Grain Size on Ultrasonic Attenuation in Aluminum Alloy Castings
    ”, INSIGHT, vol. 39, No. 2, pp536-543, 1995.
    27.F.Augereau, V.Roque, L.Robert, G.Despaux, “Non-Destructive Testing by
    Acoustic Signature of Damage Level in 304L Steel Samples Submitted to Rolling,
    Tensile Test and Thermal Annealing Treatments”, Materials Science and
    Engineering, A266, pp285-294, 1999.
    28.T.Jayakumar, B.Raj, H.Willems, W.Arnod, “Influence of Microstructure on
    Ultrasonic Velocity in Nimonic Alloy PE16”, Review of Progress in Quantitative
    Nondestructive Evaluation, vol. 10B, pp1693-1699, 1991.
    29.D.S.Kupperman, K.J.Reimann, J.Abrego Lopez, “Ultrasonic NDT of Cast
    Stainless Steel”, NDT International, vol. 20, pp145-151, 1987.
    30.韋孟育,“材料實驗方法—金相分析技術”,全華科技圖書公司,民國81年,pp32-97

    31.李家駒、周長彬,“鐵-錳-鋁雙相合金鋼中肥粒鐵含量評估之非破壞性超音波波速量測
    技術”,檢測技術,十卷三期,1992年,pp5-9。
    32.ASM Handbook, “Properties and Selection :Nonferrous Alloys and Pure Metals
    ”, ASM, vol. 2, 9th, pp1-236, 1979.
    33.ASM Handbook, “Heat Treating”, ASM, vol. 4, 10th, pp841-879, 1991.
    34.ASM Handbook, “Metallography and Microstructures”, ASM, vol. 9, 9th,
    pp352-367, 1985.
    35.陳永增、鄧惠源,“機械材料實驗”,高立圖書公司,民國86年,pp181-192。

    QR CODE