簡易檢索 / 詳目顯示

研究生: 吳青霖
Wu, Ching-Lin
論文名稱: 應用於負電壓電路之高耐壓靜電放電防護設計
High-Voltage-Tolerant ESD Protection Design for Negative Voltage Application
指導教授: 蔡政翰
Tsai, Jeng-Han
林群祐
Lin, Chun-Yu
口試委員: 彭盛裕
Peng, Sheng-Yu
黃紹璋
Huang, Shao-Chang
蔡政翰
Tsai, Jeng-Han
林群祐
Lin, Chun-Yu
口試日期: 2024/06/18
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 70
中文關鍵詞: 靜電放電高耐壓電源線間靜電放電箝位電路負電壓電源
英文關鍵詞: Electrostatic Discharge (ESD), high-voltage-tolerant power-rail ESD clamp circuit, negative voltage supply
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400927
論文種類: 學術論文
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程日益進步,電晶體的閘極氧化層相較過往更加脆弱,靜電放電測試對電路的可靠度評估已成為重要指標。而在一些高壓電路應用中,必須更加慎重考慮靜電放電對電路的影響。閘極氧化層隨著製程越來越薄,供應電壓也會隨之降低,故使用低壓元件來達到高耐壓特性成為一大挑戰。此外,相較於一般只使用正電壓供應的電路,一些如植入式生醫電路、發電廠自動裝置等,通常會配置正、負電壓源。先前許多論文使用低壓元件來達到可承受高電壓的箝位電路,並已證實其有效性,但幾乎僅針對正電壓下的防護設計,對於負電壓下的箝位電路研究非常稀少。並且在負電壓工作下,共接地的p型基底會有超乎預期的寄生路徑,因此在設計電路時必須多加考量,以避免電路的不當操作。
    第二章提出了應用在負電壓下之高耐壓靜電放電箝位電路,所有電路均在TSMC 0.18-μm 1.8V/3.3V CMOS製程下實現。為了解決上述寄生路徑的問題,整個箝位電路除了在最高電位使用pMOS外,其餘部分使用nMOS,並利用深層n型井隔開共接地p型基底與nMOS的p型井,且深層n型井接至最高電位(0V)。此外,由於低壓元件的閘極氧化層較薄,故設計電路時每個電晶體的任兩端跨壓最高只能承受1×VDD,如此可解決閘極氧化層可靠度的問題。第三章對提出的電路做各種量測,包含分析其耐受度以及長時間可靠度在室溫以及嚴苛環境下的變化,來驗證提出的電路能有效的保護內部電路。第四章總結所述,本論文提出了高耐壓靜電放電箝位電路,並針對面積以及導通效率進行最佳化,分別提出了兩種不同的電路。經量測驗證,提出的箝位電路在不影響電路正常工作下,能有效解決電路在負電壓電源線間的靜電放電問題。

    With the development of process, the gate-oxide of the transistor has become more vulnerable than in the past, and electrostatic discharge testing has become an important indicator for evaluating the reliability of circuits. In some high-voltage circuit applications, it is necessary to consider carefully the impact of electrostatic discharge on the circuit. As the gate-oxide layer becomes thinner in the process, the supply voltage decreases accordingly. Therefore, using low-voltage components to achieve high-voltage-tolerant characteristics becomes a major challenge. In addition, comparing to circuits that only use positive voltage supply, some applications such as implantable biomedical circuits, power plant automatic devices typically require both positive and negative voltage sources. Some previous papers have used low-voltage devices to achieve high-voltage-tolerant clamp circuit, and prove the effectiveness. However, research on clamp circuit under negative voltage is rare. Moreover, under normal circuit operation with negative voltage, the common-grounded P-substrate can exhibit unexpected parasitic paths, necessitating careful circuit design to avoid improper operation.
    Chapter 2 proposes a high-voltage-tolerant ESD clamp circuit under negative voltage, and all circuits have been fabricated in TSMC 0.18-μm 1.8V/3.3V CMOS process. To address the issue of parasitic paths, the entire clamp circuit uses pMOS at the highest voltage level, with the rest using nMOS. A deep n-well (DNW) is used to separate the p-well of the nMOS from the common-grounded P-substrate, and the DNW is connected to the highest voltage level (0V). Additionally, because the gate-oxide of low-voltage devices is thinner, each two adjacent nodes of devices do not exceed 1×VDD, which solves the gate-oxide reliability issue. Chapter 3 involves various measurements on the proposed circuits, including the analysis of tolerance and long-term reliability under both room temperature and harsh environmental conditions, to verify that it can effectively protect internal circuits. Chapter 4 summarizes that this paper proposes a high-voltage-tolerant ESD clamp circuit and also optimizes the area and conduction efficiency, presenting two different circuits. In the experimental results, the proposed ESD clamp circuit can effectively solve the electrostatic discharge problem for power pin of negative voltage without affecting the normal operation.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background of ESD 2 1.3 ESD Protection Design Window 2 1.4 Component-Level ESD Test Standards 3 1.5 Organization of This Thesis 8 Chapter 2 Design of Power-Rail ESD Clamp Circuit for 3×VDD Power Pin of Negative Voltage Application 9 2.1 Background of Power-Rail ESD Protection 9 2.1.1 Parasitic Path from VDD to VS 10 2.1.2 Latch-Up Path in ICs with Positive and Negative Sources 12 2.1.3 Basic Power-Rail ESD Clamp Circuit 13 2.2 Negative Voltage Applications 15 2.3 Parasitic Path with Negative Voltage in CMOS Process 16 2.4 Traditional Negative 2×VDD Power-Rail ESD Clamp Circuit 18 2.5 Proposed Negative 3×VDD Power-Rail ESD Clamp Circuit 20 2.5.1 Motivation of Proposed ESD Clamp Circuit 20 2.5.2 Proposed Circuit for Double Supply Power Clamp (DSPC) 21 2.5.3 Design Concepts of Proposed ESD Clamp Circuit 22 2.5.4 Proposed Circuit for Single Supply Power Clamp (SSPC) and Triple Supply Power Clamp (TSPC) 25 2.5.5 Simulation Results of Proposed ESD Clamp Circuit 27 2.6 Summary 32 Chapter 3  Measurement Results of Power-Rail ESD Clamp Circuit for 3×VDD Power Pin of Negative Voltage Application 33 3.1 Measurement of Proposed Circuit with Variable Temperature 35 3.1.1 TLP I-V Characteristics 35 3.1.2 DC I-V Characteristics 39 3.1.3 ESD Robustness 45 3.1.4 Performance Comparison 48 3.2 Long-Term Measurement of Proposed Circuit 49 3.2.1 Results at Room Temperature 51 3.2.2 Results at High Temperature 51 3.3 Comparison of Proposed Circuit under Harsh Environment 53 3.4 Discussion for Long-Term Measurements 54 3.5 Summary 56 Chapter 4 Conclusion and Future Work 57 4.1 Conclusion 57 4.2 Future Work 58 4.2.1 Optimization of Conduction Efficiency for Proposed ESD Circuit 58 4.2.2 Optimization of Area for Proposed ESD Circuit 60 Reference 63 Vita 69 Publication List 70

    Q. Zhang and K. Hu, “The study of impacts on long-term storage reliability caused by IC packages and preventing measurements,” in 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 2012, pp. 1290-1293.
    “2022 Long-term reliability assessment,” North American Electric Reliability Corporation (NERC), December 2022.
    R. -K. Chang and M. -D. Ker, “Design of high-voltage-tolerant power-rail ESD protection circuit for power pin of negative voltage in low-voltage CMOS processes,” IEEE Transactions on Electron Devices, vol. 67, no. 1, pp. 40-46, Jan. 2020.
    H. -S. Huang and M. -D. Ker, “Design of 2xVDD-tolerant power-rail ESD clamp circuit against false trigger during fast power-ON events,” in 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2021, pp. 1-4.
    H. Liu, Z. Yang, and Q. Zhuo, “Two ESD detection circuits for 3x VDD-tolerant I/O buffer in low-voltage CMOS processes with low leakage currents,” IEEE Transactions on Device and Materials Reliability, vol. 13, no. 1, pp. 319-321, March 2013.
    M. -D. Ker, W. -Y. Chen, and K. -C. Hsu, “Design on power-rail ESD clamp circuit for 3.3-V I/O interface by using only 1-V/2.5-V low-voltage devices in a 130-nm CMOS process,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 10, pp. 2187-2193, Oct. 2006.
    M. -D. Ker and C. -T. Wang, “ESD protection design by using only 1×VDD low-voltage devices for mixed-voltage I/O buffers with 3×VDD input tolerance,” in 2006 IEEE Asian Solid-State Circuits Conference, Hangzhou, China, 2006, pp. 287-290.
    Z. Yang, Y. Zhang, N. Yu, and J. -J. Liou, “2×VDD-tolerant ESD detection circuit in a 90-nm low-voltage CMOS process,” in 2018 7th International Symposium on Next Generation Electronics (ISNE), Taipei, Taiwan, 2018, pp. 1-4.
    T. -T. Loong, A. -H. bin Abu Hassan, and C. -H. Kung, “Power management for USB2.0 5V supply using load resistive and switch capacitive detection approach,” in 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, Malaysia, 2012, pp. 461-466.
    J. -C. Castellanos, M. Turhan, M. -A. -M. Hendrix, A. van Roermund, and E. Cantatore, “A 92.2% peak-efficiency self-resonant hybrid switched-capacitor LED driver in 0.18μm CMOS,” in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 2017, pp. 344-347.
    S. H. Voldman, ESD: Physics and Devices. Hoboken, NJ: Wiley, 2004.
    C. -Y. Lin, M. -D. Ker, P. -H. Chang, and W. -T. Wang, “Study on the ESD-induced gate-oxide breakdown and the protection solution in 28nm high-k metal-gate CMOS technology,” in 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC), Anchorage, AK, USA, 2015, pp. 1-4.
    Electrostatic Discharge Sensitivity Testing - Human Body Model (HBM) – Component Level, ANSI/ESDA/JEDEC Standard JS-001-2017, 2017.
    Electrostatic Discharge (ESD) Sensitivity Testing - Machine Model (MM), JEDEC Standard JESD22-A115C, 2010.
    Electrostatic Discharge Sensitivity Testing - Charged Device Model (CDM) - Device Level, ANSI/ESDA/JEDEC Standard JS-002-2018, 2018.
    M. -D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Transactions on Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.
    Z. -H. Jiang and M. -D. Ker, “Latch-up prevention with autodetector circuit to stop latch-up occurrence in CMOS-integrated circuits,” IEEE Transactions on Electromagnetic Compatibility, vol. 64, no. 6, pp. 1785-1792, Dec. 2022.
    R. -K. Chang and M. -D. Ker, “Using schottky barrier diode to improve latch-up immunity for CMOS ICs operating with negative voltage sources,” IEEE Electron Device Letters, vol. 42, no. 3, pp. 395-397, March 2021.
    W. Wang, S. Dong, L. Zhong, J. Zeng, Z. Yu, and Z. Liu, “GGNMOS as ESD protection in different nanometer CMOS process,” in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, 2014, pp. 1-2.
    C. -T. Yeh and M. -D. Ker, “Resistor-Less Design of Power-Rail ESD Clamp Circuit in Nanoscale CMOS Technology,” IEEE Transactions on Electron Devices, vol. 59, no. 12, pp. 3456-3463, Dec. 2012.
    C. -W. Liu, Y. -L. Chen, P. -C. Liao, S. -P. Lin, T. -W. Wang, M. -J. Chung, P. -H. Cheng, and M. -D. Ker, “An 82.9%-efficiency triple-output battery management unit for implantable neuron stimulator in 180-nm standard CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 5, pp. 788-792, May 2019.
    S. Lin and M. -D. Ker, “Design of multiple-charge-pump system for implantable biomedical applications,” in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 2018, pp. 1-4.
    Z. -H. Jiang and M. -D. Ker, “The parasitic latch-up path from substrate P⁺ guard ring to the NMOS in deep N-well operating with negative voltage sources,” IEEE Electron Device Letters, vol. 43, no. 4, pp. 604-606, April 2022.
    C. -T. Dai and M. -D. Ker, “Study on ESD protection design with stacked low-voltage devices for high-voltage applications,” IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 2014, pp. EL.5.1-EL.5.2.
    T. -Y. Chen and M. -D. Ker, “Investigation of the gate-driven effect and substrate-triggered effect on ESD robustness of CMOS devices,” IEEE Transactions on Device and Materials Reliability, vol. 1, no. 4, pp. 190-203, Dec. 2001.
    Z. Chen, Z. Wu, M. Wu, W. Peng, Y. Zeng, X. Jin, B. Li, and B. Li, “A comprehensive study of a bidirectional ESD protection device under harsh environment,” in 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Hangzhou, China, 2019, pp. 111-113.
    A. L. des Etangs-Levallois, A. Grivon, D. Baudet, W. C. Maia, and M. Brizoux, “Reliability analysis of electronic assemblies using electrically conductive adhesive for high-reliability and harsh environment applications,” in 5th Electronics System-integration Technology Conference (ESTC), Helsinki, Finland, 2014, pp. 1-5.
    T. -J. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” Proc. EOS/ESD Symp., 1985, pp. 49–54.
    J. E. Barth, K. Verhaege, L. G. Henry, and J. Richner, “TLP calibration, correlation, standards, and new techniques,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, no. 2, pp. 99-108, April 2001.
    M. -X. Huo, K. -B. Ding, Y. Han, S. -R. Dong, X. -Y. Du, D. -H. Huang, and B. Song, “Effects of process variation on turn-on voltages of a multi-finger gate-coupled NMOS ESD protection device,” in 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, Suzhou, China, 2009, pp. 832-836.
    S. Trinh, M. Mergens, K. Verhaege, C. Russ, J. Armer, P. Jozwiak, B. Keppens, R. Mohn, G. Taylor, and Frederic De Ranter, “Multi-finger tum-on circuits and design techniques for enhanced ESD performance and width scaling,” Microelectronics Reliability Vol. 43, Issues 9-11, pp. 1537-1543.
    J. Luan and M. DiVita, “An integrated precision clock generator for implanted electronics with superior long-term stability,” in Fifteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2014, pp. 762-765.
    T. T. Mattila, J. Li, and J. K. Kivilahti, “On the effects of temperature on the drop reliability of electronic component boards,” Microelectronics Reliability, Volume 52, Issue 1, Pages 165-179, 2012.
    D. M. Fleetwood, M. P. Rodgers, L. Tsetseris, X. -J. Zhou, I. Batyrev, S. Wang, R. D. Schrimpf, and S. T. Pantelides, “Effects of device aging on microelectronics radiation response and reliability,” Microelectronics Reliability, Volume 47, Issue 7, Pages 1075-1085, 2007.
    R. Krishna and P. Duraiswamy, “A technique of designing low leakage SRAM in deep sub-micron technology,” in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2020, pp. 1-5.
    C. -Y. Lin and Y. -L. Chiu, “High-voltage driving circuit with on-chip ESD protection in CMOS technology,” in 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 2017, pp. 223-224.
    J. -J. Wang, N. Rezzak, D. Dsilva, F. Xue, S. Samiee, P. Singaraju, J. Jia, V. Nguyen, F. Hawley, and E. Hamdy, “Combine flash-based FPGA TID and long-term retention reliabilities through VT Shift,” IEEE Transactions on Nuclear Science, vol. 63, no. 4, pp. 2129-2136, Aug. 2016.
    J. Chen, N. Mielke, and C. Hu, “Flash memory reliability,” in Nonvolatile Memory Technologies with Emphasis on Flash—A Comprehensive Guide to Understanding and Using NVM Devices, New York, NY, USA:Wiley-Interscience, pp. 467-469, 2008.
    S. -H. Chen and M. -D. Ker, “Area-efficient ESD-transient detection Circuit with smaller capacitance for on-chip power-rail ESD protection in CMOS ICs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 359-363, May 2009.
    F. A. Altolaguirre and M. -D. Ker, “Area-efficient ESD clamp circuit with a capacitance-boosting technique to minimize standby leakage current,” IEEE Transactions on Device and Materials Reliability, vol. 15, no. 2, pp. 156-162, June 2015.

    無法下載圖示 電子全文延後公開
    2026/07/01
    QR CODE