簡易檢索 / 詳目顯示

研究生: 黃世昌
Huang Shih-Chang
論文名稱: 利用第一原理探討水煤氣在過渡金屬上的轉移反應趨勢
Trends of Water Gas Shift Reaction on Transition Metal Surfaces from First Principles calculation
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 130
中文關鍵詞: 水煤氣轉移過渡金屬催化劑
英文關鍵詞: water gas shift, transition metal, catalyst
論文種類: 學術論文
相關次數: 點閱:217下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用密度泛函理論(DFT)可有系統的檢視最密堆積的過渡金屬Co, Ni Cu (第三週期) Rh, Pd, Ag (第四週期) 和 Ir, Pt, Au (第五週期)上水煤氣轉移反應(water gas shift,簡稱WGS)機構,計算出的能量態顯示WGS的活性主要受到兩種步驟類型的影響:O-H鍵的斷裂和C-O鍵的生成。本次研究中在過渡金屬上的活化能障和反應熱有很好的線性關係,從能量上的觀察O-H鍵斷裂和C-O鍵形成在週期表上的趨勢是互為相反的,以週期表趨勢來看第9 族< 10族 < 11族 ; 第3週期 < 第4週期 < 第5週期,換句話說,越往右下的金屬表面如Cu、Ag、Pt、Au,擁有相對較低的C-O鍵結活化能障和反應熱,表示對於WGS反應有較好的活性。此外,能量基礎上的趨勢也利用吸附能、density of state (DOS) 和 charge density來檢視,結果顯示左上的過渡金屬有較高的能量和較狹窄的d軌域的分佈,藉以造成強吸附能來穩定解離物,O-H解離反應有較低的活化能障和反應熱。此能量趨勢上的預測對於其他催化反應工作,如:乙醇催化裂解和CO氧化,可有效的設計預期的反應。

    The mechanism of water gas shift reaction (WGSR) on the close-packed transition metal surfaces of Co, Ni Cu (from the 3d row) Rh, Pd, Ag (from the 4d row) and Ir, Pt, Au (from the 5d row) has been systematically examined by periodic density functional theory (DFT) calculations. The computed potential energy surface (PES) shows that the activity of WGSR is influenced by two kinds of elementary steps: O-H bond dissociation and C-O bond formation. Activation barriers (Ea) and reaction energies (H) on a series of metal surfaces show good BEP relationship; the energetic trends in periodic table are opposite in these two kinds of steps. In O-H bond dissociation steps, trends of Ea and H are groups 9 < 10 < 11 and 3d < 4d < 5d. On the other hand, the lower-right metal surfaces in the Periodic Table, Cu(111), Ag(111), Pt(111) and Au(111), have relatively lower Ea and H in C-O bond formation steps, which is responsible for their highly WGSR activity of metal/oxide catalysts. In addition, the fundamental of energetic trends has been examined from the analyses of adsorption energy, density of state (DOS) and charge density. The result shows that the surfaces of upper-left metals in the Periodic Table with higher energy and narrower delocalization of their d orbitals yield a stronger adsorption energy that will stabilize dissociating fragments and lower Ea and H in O-H bond dissociation steps. The prediction of energetic trends in the present work is also appropriate for other catalytic reactions, such as ethanol decomposition and CO oxidation, and can help us scientifically design a better catalyst for the desired reaction.

    第一章 緒論 1.1催化反應介紹 13 1.2表面吸附介紹 17 1.3 水煤氣反應介紹及文獻綜合敘述 20 第二章 計算理論介紹 2.1 DFT理論簡介 24 第三章 計算系統與計算方法 3.1國家高速電腦中心 32 3.2 操作軟體Vienna Ab-initio Simulation Package (VASP) 32 3.3計算參數設定 49 第四章 結果與討論 4.1 反應分子吸附位置 52 4.2 WGS反應機制 55 4.3 吸附能和反應熱及能障 70 4.4 DOS分析 78 4.5電荷密度分析(charge density analysis) 89 第五章 結論 98 未來走向:WGS發展 100 (附錄)SOFC全電池製成 102

    1. http://zh.wikipedia.org/zh-tw/Wikipedia.
    2. Atkins, P.; Paula, J. d., Atkin's Physical Chemistry (seventh Edition).
    3. http://content.edu.tw/senior/chemistry/tp_sc/content1/number2/1/6-3.htm.
    4. Navarro, R. M.; Pena, M. A.; Fierro, J. L. G., Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 2007, 107, 3952.
    5. Gorte, R. J.; Zhao, S., Studies of the water-gas-shift reaction with ceria-supported precious metals. Catal. Today 2005, 104, 18.
    6. Grenoble, D. C.; Estadt, M. M.; Ollis, D. F., The chemistry and catalysis of the water gas shift reaction : 1. The kinetics over supported metal catalysts. J. Catal. 1981, 67, 90.
    7. Hilaire, S.; Wang, X.; Luo, T.; Gorte, R. J.; Wagner, J., A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl. Catal. A 2001, 215, 271.
    8. Jacobs, G.; Chenu, E.; Patterson, P. M.; Williams, L.; Sparks, D.; Thomas, G.; Davis, B. H., Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal. Appl. Catal. A 2004, 258, 203.
    9. Jacobs, G.; Patterson, P. M.; Graham, U. M.; Sparks, D. E.; Davis, B. H., Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts. Appl. Catal. A 2004, 269, 63.
    10. Lei, Y.; Cant, N. W.; Trimm, D. L., Activity Patterns for the Water Gas Shift Reaction Over Supported Precious Metal Catalysts. Catal. Lett. 2005, 103, 133.
    11. Panagiotopoulou, P.; Kondarides, D. I., Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction. J. Catal. 2004, 225, 327.
    12. Panagiotopoulou, P.; Kondarides, D. I., Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catal. Today 2006, 112, 49.
    13. Wang, X.; Gorte, R. J., The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. Appl. Catal. A 2003, 247, 157.
    14. Wang, X.; Gorte, R. J.; Wagner, J. P., Deactivation Mechanisms for Pd/Ceria during the Water–Gas-Shift Reaction. J. Catal. 2002, 212, 225.
    15. Wheeler, C.; Jhalani, A.; Klein, E. J.; Tummala, S.; Schmidt, L. D., The water–gas-shift reaction at short contact times. J. Catal. 2004, 223, 191.
    16. Haryanto, A.; Fernando, S. D.; To, S. D. F.; Steele, P. H.; Pordesimo, L.; Adhikari, S., Hydrogen Production through the Water−Gas Shift Reaction: Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts. Energy & Fuels 2009, 23, 3097.
    17. Velu, S.; Suzuki, K.; Kapoorb, M. P.; Ohashia, F.; Osaki, T., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. J. Catal. 2001, 213, 47.
    18. Tibiletti, D.; BartdeGraaf, E. A.; Teh, S. P.; Rothenberg, G.; Farrusseng, D.; Mirodatos, C., Selective CO oxidation in the presence of hydrogen:fast parallel screening and mechanistic studies on ceria-based catalysts. J. Catal. 2004, 225, 489.
    19. Park, J. B.; Graciania, J.; Evansb, J.; Stacchiolaa, D.; Maa, S.; Liua, P.; Nambua, A.; Sanzc, J. F.; Hrbeka, J.; Rodrigueza, J. A., High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. PNAS 2009, 106, 4975.
    20. Rim, K. T.; Eom, D.; Liu, L.; Stolyarova, E.; Raitano, J. M.; Chan, S.-W.; Flytzani-Stephanopoulos, M.; Flynn, G. W., Charging and Chemical Reactivity of Gold Nanoparticles and Adatoms on the (111) Surface of Single-Crystal Magnetite: A Scanning Tunneling Microscopy/Spectroscopy Study. J. Phys. Chem. C 2009, 113, 10198.
    21. Rodriguez, J. A.; Evans, J.; Graciani, J.; Park, J.-B.; Liu, P., High Water−Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size. J. Phys. Chem. C 2009, 113, 7364.
    22. Rodriguez, J. A.; Graciani, J.; Evans, J.; Park, J. B.; Yang, F.; Stacchiola, D.; Senanayake, S. D.; Ma, S.; rez, M. P.; Liu, P.; Sanz, J. F.; Hrbek, J., Water-Gas Shift Reaction on a Highly Active Inverse CeOx/Cu(111) Catalyst: Unique Role of Ceria Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 8047.
    23. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M., Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science 2007, 318, 1757.
    24. Yeung, C. M. Y.; Tsang, S. C., Noble Metal Core−Ceria Shell Catalysts For Water−Gas Shift Reaction. J. Phys. Chem. C 2009, 113, 6074.
    25. Park, J. B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S. D.; Barrio, L.; Liu, P.; Sanz, J. F.; Hrbek, J.; Rodriguez, J. A., Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. J. Am. Chem. Soc. 2010, 132, 356.
    26. Estrella, M.; Barrio, L.; Zhou, G.; Wang, X.; Wang, Q.; Wen, W.; Hanson, J. C.; Frenkel, A. I.; Rodriguez, J. A., In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts. J. Phys. Chem. C 2009, 113, 14411.
    27. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M., Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003, 301, 935.
    28. Yeung, C. M. Y.; Meunier, F.; Burch, R.; Thompsett, D.; Tsang, S. C., Comparison of New Microemulsion Prepared “Pt-in-Ceria” Catalyst with Conventional “Pt-on-Ceria” Catalyst for Water−Gas Shift Reaction. J. Phys. Chem. B 2006, 110, 8540.
    29. Rodriguez, J. A.; Hanson, J. C.; Wen, W.; Wang, X.; Brito, J. L.; Martinez-Arias, A.; Fernandez-Garcia, M., In-situ characterization of water–gas shift catalysts using time-resolved X-ray diffraction. Catal. Today 2009, 145, 188.
    30. Rodriguez, J. A.; Wang, X.; Liu, P.; Wen, W.; Hanson, J. C.; Hrbek, J.; Perez, M.; Evans, J., Gold nanoparticles on ceria: importance of O vacancies in the activation of gold. Topics in Catal. 2007, 44, 73.
    31. Jacobs, G.; Williams, L.; Graham, U.; Sparks, D.; Davis, B. H., Low-Temperature Water-Gas Shift: In-Situ DRIFTS−Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications. J. Phys. Chem. B 2003, 107, 10398.
    32. Jacobs, G.; Graham, U. M.; Chenu, E.; Patterson, P. M.; Dozier, A.; Davis, B. H., Low-temperature water–gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design. J. Catal. 2005, 229, 499.
    33. Fartaria, R. P. S.; Freitas, F. F. M.; Silva Frenandes, F. M. S., A force field for simulating ethanol adsorption on Au(111) surfaces. A DFT study. Int. J. Quantum Chem. 2007, 107, 2169.
    34. Fatsikostas, A. N.; Kondarides, D. I.; Verykios, X. E., Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal. Today 2002, 75, 145.
    35. Gokhale, A. A.; Dumesic, J., A.; Mavrikakis, M., On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 2008, 130, 1402.
    36. Liu, P.; Rodriguez, J. A., Water-gas-shift reaction on metal nanoparticles and surfaces. J. Chem. Phys. 2007, 126, 164705.
    37. Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M., Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(0001¯ ): Intrinsic Activity and Importance of Support Interactions. Angew. Chem. Int. Ed. 2007, 46, 1329.
    38. Su, H.-Y.; Yang, M.-M.; Bao, X.-H.; Li, W.-X., The Effect of Water on the CO Oxidation on Ag(111) and Au(111) Surfaces: A First-Principle Study. J. Phys. Chem. C 2008, 112, 17303.
    39. Wang, Y.; Zhang, D.; Zhu, R.; Zhang, C.; Liu, C., A Density Functional Theory Study of the Water−Gas Shift Reaction Promoted by Neutral, Anionic, and Cationic Gold Dimers. J. Phys. Chem. C 2009, 113, 6215.
    40. Ojifinni, R. A.; Froemming, N. S.; Gong, J.; Pan, M.; Kim, T. S.; White, J. M.; Henkelman, G.; Mullins, C. B., Water-Enhanced Low-Temperature CO Oxidation and Isotope Effects on Atomic Oxygen-Covered Au(111). J. Am. Chem. Soc. 2008, 130, 6801.
    41. Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M., Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling. J. Phys. Chem. C 2008, 112, 4608.
    42. Liu, Z.-P.; Jenkins, S. J.; King, D. A., Origin and Activity of Oxidized Gold inWater-Gas-Shift Catalysis. Phys. Rev. Lett. 2005, 94, 196102.
    43. Kinch, R. T.; Cabrera, C. R.; Ishikawa, Y., A Density-Functional Theory Study of the Water−Gas Shift Mechanism on Pt/Ceria(111). J. Phys. Chem. C 2009, 113, 9239.
    44. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558.
    45. Kresse, G.; Hafner, J., Phys. Rev. B 1994, 49, 1425.
    46. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
    47. Cleperley, D. M.; Alder, B. J., Phys. Rev. Lett. 1980, 45, 566.
    48. Perdew, J. P.; Yang, Y., Phys. Rev. B 1992, 45, 244.
    49. Blöchl, P. E., Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
    50. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
    51. Monkhorst, H. J.; Pack, J. D., Special points of Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188.
    52. Mills, G.; Jonsson, H.; Schenter, G. K., Reversble work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305.
    53. Camellone, M. F.; Fabris, S., Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. J. Am. Chem. Soc. 2009, 131, 10473.
    54. Chou, J.-P.; Pai, W. W.; Kuo, C.-C.; Lee, J. D.; Lin, C. H.; Wei, C.-M., Promotion of CO Oxidation on Bimetallic Au−Ag(110) Surfaces: A Combined Microscopic and Theoretical Study. J. Phys. Chem. C 2009, 113, 13151.
    55. Gong, J.; Mullins, C. B., Surface Science Investigations of Oxidative Chemistry on Gold. Acc. Chem. Res. 2009, 42, 1063.
    56. Gong, J.; Mullins, C. B., Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. J. Am. Chem. Soc. 2009, 131, 10473.
    57. Wang, F.; Zhang, D.; Xu, X.; Ding, Y., Theoretical study of the CO Oxidation Mediated by Au3+, Au3, and Au3-: Mechanism and Charge State Effect of Gold on Its Catalytic Activity. J. Phys. Chem. C 2009, 113, 18032.
    58. Wang, H.-F.; Gong, X.-Q.; Guo, Y.-L.; Guo, Y.; Lu, G.; Hu, P., Structure and Catalytic Activity of Gold in Low-Temperature CO Oxidation. J. Phys. Chem. C 2009, 113, 6124.
    59. Wang, J. G.; Hammer, B., Role of Au in Supporting and Activating Au7 on TiO2 110 Phys.Rev.Lett 2006, 97, 136107.
    60. Zhang, J.; Jin, H.; Sullivan, M. B.; Lim, F. C. H.; Wu, P., Study of Pd–Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Phys. Chem. Chem. Phys. 2009, 11, 1441.
    61. Gajdos, M.; Eichler, A.; Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations. J. Phys.: Condens. Matter 2004, 16, 1141.
    62. Phatak, A. A.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F., Density Functional Theory Comparison of Water Dissociation Steps on Cu, Au, Ni, Pd, and Pt. J. Phys. Chem. C 2009, 113, 7269.
    63. Kandoi, S.; Gokhale, A. A.; Grabow, L. C.; Dumesic, J. A.; Mavrikakis, M., Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett. 2004, 93.
    64. Greeley, J.; Mavrikakis, M., Methanol Decomposition on Cu(111): A DFT Study. J. Catal. 2002, 208, 291.
    65. Neyman, K. M.; Lim, K. H.; Chen, Z.-X.; Moskaleva, L. V.; Bayer, A.; Reindl, A.; Borgmann, D.; Denecke, R.; Steinrück, H.-P.; Rösch, N., Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. Phys. Chem. Chem. Phys. 2007, 9, 3470.
    66. Crawford, P.; Hu, P., Trends in C–O and C–N bond formations over transition metal surfaces: An insight into kinetic sensitivity in catalytic reactions. J. Chem. Phys. 2007, 126, 194706.
    67. Ford, D. C.; Xu, Y.; Mavrikakis, M., Atomic and molecular adsorption on Pt(1 1 1). Surf. Sci. 2005, 587, 159.
    68. Michaelides, A.; Hu, P., Catalytic Water Formation on Platinum: A First-Principles Study. J. Am. Chem. Soc. 2001, 123, 4235.
    69. Barton, D. G.; Podkolzin, S. G., Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 2262.
    70. Wang, G.-C.; Tao, S.-X.; Bu, X.-H., A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals. J. Catal. 2006, 244, 10.
    71. Mavrikakis, M.; Rempel, J.; Greeley, J.; Hansen, L. B.; Norskov, J. K., Atomic and molecular adsorption on Rh(111). J. Chem. Phys. 2002, 117, 6737.
    72. Xu, Y.; Mavrikakis, M., Adsorption and dissociation of O2 on Ir(111). J. Chem. Phys. 2002, 116, 10846.
    73. Eichler, A.; Mittendorfer, F.; Hafner, J., Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys. Rev. B 2000, 62, 4744.
    74. Greeley, J.; Mavrikakis, M., Alloy catalysts designed from first principles. Nat. Mater. 2004, 3, 810.
    75. Pozzo, M.; Carlini, G.; Rosei, R., Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations. J. Chem. Phys. 2007, 126, 164706.
    76. Cao, Y.; Chen, Z.-X., Theoretical studies on the adsorption and decomposition of H2O on Pd(1 1 1) surface. Surf. Sci. 2006, 600, 4572.
    77. Crawford, P.; McAllister, B.; Hu, P., Insights into the Staggered Nature of Hydrogenation Reactivity over the 4d Transition Metals. J. Phys. Chem. C 2009, 113, 5222.
    78. Michaelides, A.; Liu, Z.-P.; Zhang, C. J.; Alavi, A.; King, D. A.; Hu, P., Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces. J. Am. Chem. Soc. 2003, 125, 3704.
    79. Gong, X.-Q.; Liu, Z.-P.; Raval, R.; Hu, P., A Systematic Study of CO Oxidation on Metals and Metal Oxides: Density Functional Theory Calculations. J. Am. Chem. Soc. 2004, 126, 8.
    80. Laidler; K.J, Chemical kinetics 3rd ed. New York, 1987.
    81. Nakamura, J.; Campbell, J. M.; Campbell, C. T., Kinetics and mechanism of the water-gas shift reaction catalyzed by the clean and Cs-promoted Cu(110) surface-A comparison with Cu(111). J. Chem. Soc. Faraday Trans. 1990, 86, 2725.
    82. Henkelman, G.; Arnaldsson, A.; Jonsson, H., A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36, 354.
    83. Chen, K.; Tian, Y.; Lü, Z.; Ai, N.; Huang, X.; Su, W., Behavior of 3 mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating. Journal of Power Sources 2009, 186, 128.

    下載圖示
    QR CODE