簡易檢索 / 詳目顯示

研究生: 黃明星
Huang Ming-Hsing
論文名稱: 中藥材之色層分析
指導教授: 許順吉
Xu, Shun-Ji
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 198
中文關鍵詞: 高效液相層析毛細管電泳桂枝葛根麻黃基原
英文關鍵詞: high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), Cinnamomi Ramulus, Puerariae Radix, Ephedrae Herba, origin
論文種類: 學術論文
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效液相層析(HPLC)及毛細管電泳(CE)同屬液相層析技術,它們遵循不同的分離機制,各有其優缺點,是目前最常用來定量中藥指標成分的方法。本研究的目的在開發CE及HPLC方法,尋找最適化條件,以分析桂枝及葛根之成分含量,並比較該兩方法之優劣。另以十二烷磺酸鈉(SDS)與磷酸鹽兩種沖提系統,開發麻黃六生物鹼成分之HPLC法;利用葛根成分的HPLC分析方法,進行其品質優劣比較及基原化學辨識研究;最後以桂枝的HPLC分析方法,進行小白鼠口服桂枝藥材的血液分析與生體可用率研究。
    桂枝藥材含香豆素(coumarin)、肉桂醇(cinnamyl alcohol)、肉桂醛(cinnamaldehyde)、肉桂酸(cinnamic acid)、2-甲氧基肉桂醛(2-methoxycinnamaldehyde)、乙酸肉桂酯(cinnamyl acetate)等多種指標成分。以膠束電動力學毛細管層析(MEKC)分析技術,使用硼酸鹽緩衝溶液中加入30 mM SDS,並藉由調整pH值至9.70和加入異丙醇,可成功的於50分鐘內分離桂枝粗萃物中的六種指標成分;在HPLC分析部分,使用醋酸鹽、甲醇與乙腈為沖提液,可於35分鐘內,成功地分離桂枝這些成分。
    利用膠束電動力學毛細管層析分析技術,以適當的磷酸鹽溶液加入40 mM SDS,調整pH值至6.0時,可成功地在50分鐘內完成葛根七個指標成分[葛根素(puerarin)、大豆苷(daidzin)、6,7-二甲氧基香豆素(6,7-dimethoxycoumarin)、大豆素(daidzein)、金雀異黃素(genistein)、芒柄花素(formononetin) 和 biochanin A]的分析;在HPLC分析部分,藉著使用Cosmosil 5C18-MS管柱,調整沖提液磷酸鹽的濃度、有機溶劑的比例與pH值,亦可順利在65分鐘內同時定量分析葛根的七個成分。
    開發含SDS與含磷酸鹽的兩HPLC分析方法,分離麻黃的生物鹼成分 [麻黃素((-)-l-ephedrine)、偽麻黃素((+)-d-pseudoephedrine)、甲基麻黃素((-)-l-methylephedrine)、甲基偽麻黃素((+)-d-methylpseudoephedrine)、去甲基麻黃素((-)-l-norephedrine)、去甲基偽麻黃素((+)-d-norpseudoephedrine)]。一方法採雙泵階梯沖提方式,使用Cosmosil 5C18-MS 管柱,以50 mM 的磷酸鹽及乙腈溶液沖提,可在50分鐘內同時定量分析麻黃的六個成分。另一方法採單泵沖提方式,亦用Cosmosil 5C18-MS 管柱,以25 mM SDS的乙腈水溶液沖提,可在35分鐘內順利分析麻黃生物鹼。
    此外,本研究以HPLC方法,分析購自台灣藥材市場與順天堂藥廠之葛根樣品,整理歸納、利用其特殊的化學指紋圖譜辨識粉葛與野葛兩種植物基原。分析結果顯示台灣市場購買之葛根樣品皆為粉葛。兩種品種的主要差別在於葛根素與大豆素的比值和葛根素之含量;葛根素與大豆素含量的比值在野葛中均大於11.92,在粉葛中均小於6.89;葛根素在野葛中之含量均大於2.5 mg/g,在野葛中之含量均小於2.0 mg/g。根據定量分析數據,可作為葛根品質與辨識野葛、粉葛基原的參考。
    另外,藉著餵食桂枝藥材於小白鼠,並以上述HPLC方法分析,發現肉桂醇、肉桂醛和肉桂酸之代謝物均為肉桂酸。桂枝生藥材之肉桂酸最大濃度出現時間比肉桂醛純品物延遲約3分鐘。推測桂枝藥材吸收較緩和且在動物體內作用停留時間較長。肉桂醛在離體的血液中亦會氧化成肉桂酸,但在離體試管中較在動物體慢很多。

    The quality of Chinese herbal drugs is determined by either chemical assay or bioassay, and the former is usually performed by capillary electrophoresis (CE) or high-performance liquid chromatography (HPLC). In this study, a number of analytical methods, including CE and HPLC, were developed to evaluate the quality of Cinnamomi Ramulus, Puerariae Radix and Ephedrae Herba, and to postulate the origin of Puerariae Radix and the bioavailability of Cinnamomi Ramulus.
    Cinnamomi Ramulus contains coumarin, cinnamyl alcohol, cinnamaldehyde, cinnamic acid, 2-methoxycinnamaldehyde and cinnamyl acetate as its bioactive constituents. Here, we developed an HPLC and a CE method for determining the six cinnamomi constituents simultaneously. In micellar electrokinetic chromatography (MEKC), a buffer solution containing 18 mM sodium borate, 30 mM sodium dodecyl sulfate (SDS) and 12.5% isopropanol (v/v) was found to be the most suitable approach to determine the contents of these marker substances within 50 minutes. In HPLC, a buffer solution containing 30 mM sodium acetate, methanol and acetonitrile was applied to analyze these marker substances within 35 minutes.
    An HPLC method and a CE method for the separation of seven components (puerarin, daidzin, 6,7-dimethoxycoumarin, daidzein, genistein, formononetin and biochanin A) in Puerariae Radix were developed. Detection at 254 nm with a linear gradient elution system of 30 mM dihydrogenphosphate buffer in HPLC or with 40 mM SDS and 10 mM sodium dihydrogenphosphate in CE was found to be able to separate these components well. Contents of the individual components in an unpretreated Puerariae Radix extract could be easily determined within 65 min by HPLC or 50 min by CE.
    Two simple methods for simultaneous determination of six ephedrine alkaloids ((-)-l-ephedrine), (+)-d-pseudoephedrine, (-)-l-methylephedrine, (+)-d-methylpseudoephedrine, (-)-l-norephedrine and (+)-d-norpseudoephedrine) in Ephedrae Herba by HPLC were developed. The first one was carried out by using a Cosmosil 5C18-MS column with a gradient solvent system consisted of 50 mM phosphate buffer and acetonitrile, and the contents of alkaloids in non-pretreated Ephedra extracts could easily be determined in 50 min. Alternatively, the alkaloids could be determined by using a Cosmosil 5C18-MS column with an isocratic solvent system of 25 mM SDS - acetonitrile solution within 35 minutes.
    A total of 25 samples of Puerariae Radix, 14 samples from the markets and 11 samples from Sun Ten Pharmaceuticals, were collected and assayed. Results showed that the samples bought from Taiwan herbal markets were all belonged to P. thomsonii. The two kinds of Puerariae Radix can be distinguished by the ratios of puerarin / daidzein or the contents of puerarin. The ratio puerarin / daidzein was higher than 11.92 in P. lobata, but less than 6.89 in P. thomsonii. In addition, the contents of puerarin were higher than 2.5 mg/g in P. lobata, but less than 2.0 mg/g in P. thomsonii. From data of chemical analysis of the herbal constituents, the origin and quality of a herb, could be postulated.
    The bioavailability of cinnamomi constituents can be determined by assaying the contents of compounds existed in animal blood with HPLC. Experimental results showed that the major component in the blood of the mice was cinnamic acid regardless which were fed with cinnamic acid, cinnamaldehy or cinnamyl alcohol. Values for the content of cinnamic acid and the time of maximal concentration were calculated. The relative bioavailability of Cinnamomi Ramulus was higher than that of pure standards and also mixed marker substances. In vitro experiment, analytical data showed that the oxidating rate of cinnamaldehyde with mice blood in test tube is much slower than that in animals.

    目 錄 圖目錄 …………………………………………………….…VII 表目錄 ….………………………………………….………….X 中文摘要 ………………………………………….……….XII 英文摘要 ……………………………………………….....XV 第一章 緒論……………………………………………………1 1-1 前言 …………………………………………………………..…1 1-2 分析儀器 ……………………………………………………..…2 1-2-1 高效能液相層析 ………………………………………….2 1-2-2 毛細管電泳 …………………...………………………….4 1-2-2.1 分離原理 ………………..……………………………..6 1-2-2.2 分離模式 ……………………………………………..8 1-2-2.2A 毛細管區帶電泳(CZE) …………………………..8 1-2-2.2B 膠束電動力學毛細管層析(MEKC) ……………..10 1-2-3 毛細管電泳法和高效能液相層析法之比較 ………….12 1-3 分析條件之參數與適宜性 …………………………………….14 1-3-1 容量因子(capacity factor) ………………………………..15 1-3-2 解析度(resolution) ……………………………………….16 1-3-3 理論板數(theoretical plate number) ……………………..16 1-3-4 拖尾係數(tailing factor) ………………………………….17 1-3-5 直線性(linearity) ………………..………………………18 1-3-6 準確度(accuracy) ...……………………………………….19 1-3-7 精密度(precision) …...…………………………………….19 1-4 參考資料 …………………..…………………………………..21 第二章 中藥材桂枝之HPLC/CE分析…….………………..23 2-1 前言 …………………………………………………………….23 2-2 實驗部份 ……………………………………………………….27 2-2-1 藥品與儀器 ……………………………………………….27 2-2-1.1 實驗藥品 ……………………………………………..27 2-2-1.2 實驗儀器 ……………………………………………..28 2-2-2 分析條件 …………………………………………….28 2-2-2A 毛細管電泳法………………………………………..28 2-2-2B 高效液相層析法……………………………………..30 2-2-3 配製標準品溶液及製作檢量線 ………………………….33 2-2-4 分析條件之適宜性評估 ………………………………….34 2-2-5 桂枝藥材之定量分析.…………………………………….35 2-3 結果與討論 …………………………………………………….36 2-3-1 分析條件之探討 ………………………………………….36 2-3-1.1 CE部分……….……………………………………….36 2-3-1.2 HPLC部分……….……………………………………40 2-3-2 檢量線之製作 …………………………………………….52 2-3-3 分析條件之適宜性評估 ………………………………….53 2-3-4 桂枝藥材樣品之分析…..…………………………………56 2-4 參考資料 ………………………………….…………….……57 第三章 中藥材葛根之HPLC/CE分析….…………………….60 3-1 前言 …………………………………………………………….60 3-2 實驗部分 ………………………………….…………….…65 3-2-1 藥品與儀器 ……………………………………………….65 3-2-1.1 實驗藥品 ……………………………………………..65 3-2-1.2 實驗儀器 ……………………………………………..66 3-2-2 分析條件 …………………………………………….66 3-2-2A 毛細管電泳法………………………………………..66 3-2-2B 高效液相層析法……………………………………..68 3-2-3 配製標準品溶液及製作檢量線 ………………………….71 3-2-4 分析條件之適宜性評估 ………………………………….72 3-2-5 葛根藥材之定量分析.…………………………………….73 3-3 結果與討論 …………………………………………………….74 3-3-1 分析條件之探討 ………………………………………….74 3-3-1.1 CE部分 ………………………………………..74 3-3-1.2 HPLC部分……………………………………...78 3-3-2 檢量線之製作 …………………………………………….90 3-3-3 分析條件之適宜性評估 ………………………………….91 3-3-4 葛根藥材樣品之分析 …………………………………….94 3-4 參考資料 ………………………………………………………95 第四章 中藥材麻黃之HPLC分析………...…………..…….97 4-1 前言……………………………………………………………..97 4-2 實驗部分………………………………………………………100 4-2-1 藥品與儀器………………………………………………100 4-2-1.1 實驗藥品…………………………………………….101 4-2-1.2 實驗儀器…………………………………………….101 4-2-2 分析條件…………………………………………………102 4-2-2.A SDS沖提液系統(MethodⅠ)………………………102 4-2-2.B 磷酸鹽沖提液系統(MethodⅡ)…….………………103 4-2-3 配製標準品溶液及製作檢量線…………………………105 4-2-4 分析條件之適宜性評估…………………………………107 4-2-5 麻黃藥材之定量分析……………………………………108 4-3 結果與討論……………………………………………………108 4-3-1 分析條件之探討…………………………………………108 4-3-1.1 SDS沖提液系統…………………………..……...…109 4-3-1.2 磷酸鹽沖提液系統……………………….….…...…114 4-3-2 檢量線之製作……………………….………………...…128 4-3-3 分析條件之適宜性評估…………………….………...…130 4-3-4 麻黃藥材樣品之分析……………………………………133 4-4 參考資料……………………………………………………...134 第五章 葛根基原之化學辨識……………………………136 5-1 前言……………………………………………………………136 5-1-1 地道藥材與葛根之本草考證…………….………….136 5-1-2 葛根之品種及鑑別….…………………………………137 5-1-3 野葛與粉葛之原植物鑑定…….………………………140 5-1-4 野葛與粉葛生藥性狀………….………………………141 5-1-5 野葛與粉葛之組織構造比較……….…………………141 5-2 實驗部分………………………………………………………146 5-2-1 實驗藥品與儀器………………………………………146 5-2-1.1 實驗藥品與藥材…………………………………….146 5-2-1.2 實驗儀器……………………………………………146 5-2-2 分析條件………………………………………………147 5-2-3 葛根藥材檢液配製……….……………………………148 5-3 結果與討論……………………………………………………149 5-3-1 基原鑑別…..…………….……………………………149 5-3-2 葛根藥材之性狀與成分含量.….…………………….152 5-4 參考資料.……………………………………………………...160 第六章 桂枝之生體可用率研究 6-1 前言…………………………………………………………....161 6-2 實驗部分………………………………………………………162 6-2-1 藥品與儀器………………………………………………162 6-2-1.1 實驗藥品……………………………………………163 6-2-1.2 實驗儀器……………………………………………163 6-2-2 分析條件……..….…….…………………………………164 6-2-3 配製標準品溶液及製作檢量線…………………………165 6-2-4 分析條件之適宜性評估…………………………………166 6-2-5 樣品之處理…..…………………………………..………167 6-3 結果與討論……………………………………………………169 6-3-1 分析條件之探討…………………………………………169 6-3-2 回收率的分析….………………………………………...170 6-3-3 肉桂醇、酸、醛、指標成分混合物與生藥材之吸收代 謝情形………..………..…….…………..……………....171 6-3-3.1 肉桂醛純品之吸收代謝情形………………………171 6-3-3.2 肉桂醇純品之吸收代謝情形………………………176 6-3-3.3 肉桂酸純品之吸收代謝情形………………………178 6-3-3.4 桂枝指標成分混合物之吸收代謝情形……………180 6-3-3.5 桂枝藥材之吸收代謝情形……………….…………182 6-3-4 離體實驗…………….………………………….……...186 6-3-4.1 肉桂醛的離體實驗…………………………………186 6-3-4.2 桂枝指標成分混合物與桂枝藥材的離體實驗…….188 6-4 參考資料……………………………………………………...192 第七章 結論………………………………………………195

    chap1
    1. M. Twett, Proc. Warsaw Soc. Nat. Sci. Biol., 1930, 14, 6.
    2. A. J. P. Martin, and R. L. M. Synge, J. Biochem., 1941, 35, 1358.
    3. T. James, and A. J. P. Martin, Analyst, 1952, 77, 915.
    4. E. Stahl, Chemiker-Ztg., 1958, 82, 323.
    5. J. F. K. Huber, and J. A. R. J. Hulsman, Anal. Chem. Acta, 1967, 38, 305.
    6. A. Tiselius, Tran. Faraday Soc., 1937, 33, 524.
    7. S. Hjerten, Chromatogr. Rev., 1967, 9, 122.
    8. R. Virtanen, Acta Polytechnica Scand., 1974, 123, 1.
    9. J. W. Jorgenson, and K. D. Lukacs, Anal. Chem., 1981, 53, 1298.
    10. E. M. Everaerts, and P. E. M. Verheggen, ed., New Directions in Electrophoretic Methods, J. W. Jorgenson, and M. Phillips, Amer. Chem. Soc. Symp. Vol. 335, Chap. 4, Washington DC, 1997.
    11. J. W. Jorgenson, and K. D. Lukacs, J. Chromatogr., 1981, 218, 209.
    12. J. W. Jorgenson, and K. D. Lukacs, J. High Resoln Chromatogr. Chromatogr. Comm., 1981, 4, 230.
    13. J. W. Jorgenson, and K. D. Lukacs, Clin. Chem., 1981, 27, 1551.
    14. J. W. Jorgenson, and K. D. Lukacs, Science, 1983, 222, 266.
    15. J. W. Jorgenson, Trends Anal. Chem., 1984, 3, 51.
    16. K. Altria, and C. Simpson, Anal. Proc., 1986, 23, 453.
    17. T. Tsuda, J. High Resoln Chromatogr. Chromtogr. Comm., 1987, 10, 622.
    18. S. Terabe, K. Otsuka, and T. Ando, Anal. Chem., 1989, 61, 25l.
    19. K. Otsuka, and S. Terabe, J. Microcol. Sep., 1989, l, 150.
    20. A. T. Tsuda, K. Normura, and G. Nakagawa, J. Chromatogr., 1982, 248, 241.
    21. M. J. Sepaniak, and R. O. Cole, Anal. Chem., 1987, 59, 472.
    22. T. Balchunas, and M. J. Sepania, Anal. Chem., 1988, 60, 1466.
    23. A. M. Martin, G. Guiochon, Y. Warbroehol, and J. W. Jorgenson, Anal. Chem., 1985, 57, 559.
    24. M. M. Bushey, and and J. W. Jorgenson, J. Microcol. Sep., 1989, 1, 125.
    25. A. Dobashi, T. Ono, S. Hara, and J. Yamaguchi, J. Chromatogr., 1989, 480, 413.
    26. S. Terabe, H. Utsumi, K. Otsuka, T. Ando, T. Inomata, S. Kuze, and Y. Hanaoka, J. High Resoln Chromatogr. Chromatogr. Commun., 1986, 9, 666.
    27. D. E. Burton, M. J. Sepaniak, and M. P. Maskarinec, J. Chromatogr. Sci., 1987, 25, 514.
    28. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando, Anal. Chem., 1984, 56, 111.

    chap2
    1. 許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,《簡明藥材學》,第29頁;第268頁,新醫藥出版社,台北,1985。
    2. Z. Zhu, Y. Feng, H. Fang, G. Liu, N. Li, Q. Hu, H. Chen, and Y. Wang, Zhongcaoyao, 1985, 16, 316; Chem. Abstr., 1985, 103, 166005a.
    3. A. Yuan, L. Tan, S. Wei, S. Kang, and D. Jiang, Zhongyao tongbao 1984, 9, 127; Chem. Abstr., 1984, 101, 60032a.
    4. K. Sagara, T. Oshima, T. Yoshida, Y. Tong, G. Zhang, and Y. Chen, J. Chromatogr., 1987, 409, 365.
    5. A. W. Archer, J. Chromatogr., 1988, 447, 272.
    6. A. Yagi, N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka, and A. Koda, Chem. Pharm. Bull., 1980, 28, 1432.
    7. T. Nohara, I. Nishioka, N. Tokubuchi, K. Miyahara, and T. Kawasaki, Chem. Pharm. Bull., 1980, 28, 1969.
    8. T. Nohara, N. Tokubuchi, M. Kuroiwa, and I. Nishiioka, Chem. Pharm. Bull., 1980, 28, 2682.
    9. T. Nohara, Y. Kashiwada, and I. Nishioka, Phytochemistry, 1985, 24, 1849.
    10. S. Morimoto, G. Nonaka, and I. Nishioka, N. Ezaki, N. Takizawa, Chem. Pharm. Bull., 1985, 33, 2281.
    11. S. Morimoto, G. Nonaka, and I. Nishioka , Chem. Pharm. Bull., 1986, 34, 633.
    12. S. Morimoto, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 1986 , 34, 643.
    13. 許鴻源,《中藥材之研究》,第199頁,新醫藥出版社,台北,1980。
    14. 林鉅超,《中藥匯通》,第1頁,大春中醫雜誌社,台南,1986。
    15. 行政院衛生署中醫藥委員會,《認識常用中藥(二)》,第13頁,台彩文化事業股份有限公司,台北,1999年。
    16. K. Kanemaru, T. Takoya, and T. Miyamoto, Nippon Shokuhin Kogyo Gakkaishi, 1990, 37, 565; Chem. Abstr., 1991, 114, 162493n.
    17. S. R. Ko, N. M. Kim, B. S. Jeon, and K. Jchoi, Koryo Insam Hakhoechi, 1991, 15, 1; Chem. Abstr., 1991, 115, 263566p.
    18. S. Kermasha, M. Goetgheheur, and J. Dumont, Food Sci. Technol., 1994, 27, 578; Chem. Abstr., 1995, 122, 54386m.
    19. D. Ehlers, S. Hilmer, and S. Bartholomae, Z. Lebensm. – Unters. Forsch, 1995, 200, 282; Chem. Abstr., 1995, 123, 226358t.
    20. T. Murakami, K. Ukita, and I. Akaogi, Iyakuhin Kenkyv, 1996, 27, 111; Chem, Abstr., 1996, 124, 270689w.
    21. W. Archer, J. Chromatogr., 1988, 447, 272.
    22. K. Sagara, T. Oshima, and T. Yoshida, J. Chromatogr., 1987, 409, 365.
    23. S. Fujiwara, and S. Honda, Anal. Chem., 1986, 58, 1811.
    24. Y. M. Liu, and S. J. Sheu, Anal. Chim. Acta, 1994, 288, 221.
    25. Y. M. Liu, and S. J. Sheu, J. Chromatogr. A, 1994, 663, 239.
    26. W. C. Chuang, C. Y. Chu, and S. J. Sheu, J. Chromatogr. A, 1996, 727, 317.
    27. A. Yuan, L. Qin, and D. Jiang, Yaoxue Tongbao, 1981, 16, 631; Chem. Abstr., 1981, 96, 214279d.
    28. 張麗卿,《中藥材桂枝、桂皮藥效成分之定量研究》,國立台灣師範大學化學研究所
    chap3
    1. 許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,《簡明藥材學》,第52頁,新醫藥出版社,台北,1985。
    2. 樓之芩、秦波,《常用中藥材品種整理和質量研究第一冊(北方編)》,第379-419頁,福建科學技術出版社,福建,1995。
    3. S. Shibata, T. Murakami, Y. Nishikawa and M. Harada, Chem. Pharm. Bull. 1959, 7, 134.
    4. R. Khan, P. Agrawal and R. Kapil, Phytochemistry, 1996, 42, 243.
    5. H. Kazuhiro, M. Makoto, N. Kaoru, S. Koh, T. Koji and O. Minoru, Phytochemistry, 1997, 46, 921.
    6. C. Miaohua, and Z. Siju, Zhongyao Tongbao, 1985, 10, 274; Chem. Abstr., 1985, 103, 165997p.
    7. 許鴻源,《中藥材之研究》,第124頁,新醫藥出版社,台北,1980。
    8. 林鉅超,《中藥匯通》,第14頁,大春中醫雜誌社,台南,1986。
    9. 行政院衛生署中醫藥委員會,《認識常用中藥(二)》,第82頁,台彩文化事業股份有限公司,台北,1999年。
    10. J. Hayakawa, N. Noda, S. Yamada, and K. Uno, Yakugaku Zasshi 1984, 104, 50.
    11. S. Zhao, and Y. Zhang, Yaoxue Xuebao 1985, 20, 203; Chem. Abstr., 1985, 103, 92920w.
    12. Y. Zhong, B. Chen, G. Fu, and Z. Gu, Tianran Chanwu Yanjiu Yu Kaifa, 1993, 5, 82; Chem. Abstr., 1993, 117, 167696.
    13. K. C. Wen, C. Y. Huang, and F. L. Lu, J. Chromatogr. 1993, 631, 241.
    14. T. Yasuda, N. Momma, and K. Ohsawa, Yakugaku Zasshi 1993, 113, 881.
    15. C. Y. Wang, H. Y. Huang, K. L. Kuo and Y. Z. Hsieh, J. Chromatogr. A, 1998, 802, 225.

    chap4
    1. 許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,《簡明藥材學》,第31頁,新醫藥出版社,台北,1985。
    2. W. N. Nagai, and S. Kanao, J. Pharm. Soc., 1928, 48, 845.
    3. K. Yamazaki, Wakan Iyaku Gakkaishi, 1985, 2, 93; Chem. Abstr., 1985, 104, 56500.
    4. K. Kimura, H. Shimada, S.Y. Normura, and T. Tanaka, Yakugaku Zasshi, 1973, 93, 364.
    5. 行政院衛生署中醫藥委員會,《認識常用中藥(二)》,第16頁,台彩文化事業股份有限公司,台北,1999年。
    6. 許鴻源,《中藥材之研究》,第132頁,新醫藥出版社,台北,1980。
    7. Y. Hashimoto, Y. Ikeshiro, T. Higashiyama, and K. Audo, M. Endo, Yakugaku Zasshi, 1977, 97, 594.
    8. K. Yamasaki, K. Fujita, M. Sakamiti, K. Okada, M. Yoshida, and O. Tanaka, Chem. Pharm. Bull., 1974, 22, 2898.
    9. K. Yamasaki, and K. Fujita, Chem. Pharm. Bull., 1979, 27, 43.
    10. Y. Kasahara, and H. Hikino, J. Chromatogr., 1985, 324, 503.
    11. N. Iwanami, Y. Ohtsuka, and H. Kubo, Yaoxue Tongbao, 1985, 20, 149; Chem. Abstr., 1985, 104, 56490t.
    12. M. Anetai, and T. Yamagishi, Hokkaidoritsu Eisei Kenkyushoho, 1987, 37, 44; Chem. Abstr., 1987, 108, 101403n.
    13. M. Noguchi, K. Hosoda, and H. Suzuki, Yakugaku Zasshi, 1987, 107, 372.
    14. J. Zhang, Z. Tian, and Z. Lou, Planta Med., 1988, 54, 69.
    15. C. Imaz, D. Carrearas, R. Navajas, C. Rodriguez, A.F. Rodriguez, J. Maynar, and R. Cortes, J. Chromatogr., 1993, 631, 201.
    16. K. Sagara, K. Suto, Y. Ito, Y. Nagai, H. Suzuki, and M. Satake, Iyakuhin Kenkyu, 1996, 27, 255; Chem. Abstr., 1996, 125, 96269.
    17. Y. M. Liu, and S. J. Sheu, J. Chromatogr., 1992, 600, 370.
    chap5
    1. 許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,《簡明藥材學》,第52頁,新醫藥出版社,台北,1985。
    2. 樓之芩、秦波,《常用中藥材品種整理和質量研究第一冊(北方編)》,第379-419頁,福建科學技術出版社,福建,1995。
    3. 行政院衛生署中醫藥委員會,《認識常用中藥(二)》,第82頁,台彩文化事業股份有限公司,台北,1999年。
    chap6
    1. 許鴻源,《中藥材之研究》,第199頁,新醫藥出版社,台北,1980。
    2. 林鉅超,《中藥匯通》,第1頁,大春中醫雜誌社,台南,1986。
    3. 樓之芩、秦波,《常用中藥材品種整理和質量研究第一冊(北方編)》,第203-251頁,福建科學技術出版社,福建,1995。
    4. 許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌,《簡明藥材學》,第29頁;第268頁,新醫藥出版社,台北,1985。
    5. Z. Zhu, Y. Feng, H. Fang, G. Liu, N. Li, Q. Hu, H. Chen, and Y. Wang, Zhongcaoyao, 1985, 16, 316; Chem. Abstr., 1985, 103, 166005a.
    6. A. Yuan, L. Tan, S. Wei, S. Kang, and D. Jiang, Zhongyao tongbao 1984, 9, 127; Chem. Abstr., 1984, 101, 60032a.
    7. K. Sagara, T. Oshima, T. Yoshida, Y. Tong, G. Zhang, and Y. Chen, J. Chromatogr., 1987, 409, 365.
    8. A. W. Archer, J. Chromatogr., 1988, 447, 272.
    9. A. Yagi, N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka, and A. Koda, Chem. Pharm. Bull., 1980, 28, 1432.
    10. T. Nohara, I. Nishioka, N. Tokubuchi, K. Miyahara, and T. Kawasaki, Chem. Pharm. Bull., 1980, 28, 1969.
    11. T. Nohara, N. Tokubuchi, M. Kuroiwa, and I. Nishiioka, Chem. Pharm. Bull., 1980, 28, 2682.
    12. T. Nohara, Y. Kashiwada, and I. Nishioka, Phytochemistry, 1985, 24, 1849.
    13. S. Morimoto, G. Nonaka, I. Nishioka, N. Ezaki, and N. Takizawa, Chem. Pharm. Bull., 1985, 33, 2281.
    14. S. Morimoto, G. Nonaka, and I. Nishioka , Chem. Pharm. Bull., 1986, 34, 633.
    15. S. Morimoto, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 1986 , 34, 643.
    16. Y. Kano, T. Sakurai, and K. Saito, Shoyakugaku Zasshi, 1989, 43, 199.
    17. S. Tanaka, Y. H. Yoon, H. Fukui, M. Tabata, T. Akira, and K. Okano, Planta Med., 1989, 55, 245.
    18. R. C. Brown, A. Klein, W. K. Simmons, and R. F. Hurrell, Nutr. Res., 1990, 10, 343; Chem. Abstr., 1990, 113, 22352.
    19. M. Hashi, Shinrin Sogo Kenkyusho Kemkyu Hokoku, 1991, 360, 121; Chem. Abstr., 1991, 115, 110684.
    20. C. W. Lee, D. H. Hong, and S. B. Han, Planta Med., 1999, 65, 263.
    21. 羅介媛,《桂類藥材相對生體可用率之比較研究》,國立台灣師範大學化學研究所碩士論文,台北,1992

    無法下載圖示
    QR CODE