簡易檢索 / 詳目顯示

研究生: 蔡明男
Min-Nan Tsai
論文名稱: 於MPEG格式教學影片上進行自動擷取主要畫面研究
Automated Key-frame Detection on MPEG Format Lecture Video
指導教授: 李忠謀
Lee, Chung-Mou
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 64
中文關鍵詞: 主要畫面偵測教學影片視訊分割MPEG格式影片場景變換偵測
英文關鍵詞: keyframe detection, lecture video, video segmentation, MPEG format video, shot change detection
論文種類: 學術論文
相關次數: 點閱:261下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主要畫面擷取是在進行建立影片索引及影片內容探尋時,非常重要的前處理步驟。而教學影片,其主要畫面定義為投影片切換的畫面。本研究提出一套有效率的演算法,針對MPEG格式教學影片進行主要畫面擷取,能在不需還原壓縮的格式下,直接分析畫面本身的差異性,進而找出教學影片中的主要畫面。本研究由MPEG格式中的I畫面取出代表亮度的Y畫面,再以Y畫面中的DC值形成YDC畫面,依教學影片的特性,將IYDC畫面分成內、外兩個區域,比較連續兩張YDC畫面的內外區域差異,來找出發生投影片切換的時間點。本研究並已運作於目前實際進行的教學課程,實驗數據顯示本研究的方法能有良好的效能。

    Key-frame extraction is an important pre-process step before video indexing and retrieval. For lecture videos, key-frames are defined to be those involving slide-changing frames. This thesis proposes an efficient algorithm for automatic slide-change detection of MPEG format lectures videos. The proposed algorithm is based on analyzing the regional differences of the dc-values of the Y-channel of I-frames of the MPEG compressed video. Experimental results show that the proposed algorithm is fast and effective in detecting slide-changing frames while suppressing those involving intensity changes due to non-slide-changing activities.

    目錄 圖目錄..................................................................................................................... iii 表目錄..................................................................................................................... iv 第一章 緒論......................................................................................................... 1 1.1研究動機................................................................................................... 1 1.2研究目的................................................................................................... 3 1.3研究範圍與限制....................................................................................... 4 1.4論文架構..............................................................................................…. 5 第二章 相關技術與文獻探討............................................................................. 6 2.1名詞釋義................................................................................................... 6 2.2影片片段變化偵測相關技術探討...........……........................................ 10 2.2.1和影片編碼格式無關的片段變化偵測技術................................ 11 2.2.2和影片編碼格式相關的片段變化偵測技術................................ 14 2.2.2.1 MPEGI/II影片格式簡介...........…….............................. 14 2.2.2.2運用MPEGI/II格式資訊進行片段變化偵測技術....… 19 2.3教學影片片段變化偵測...............................................…....................... 22 第三章 教學影片主要畫面判斷技術................................................................. 27 3.1研究目標................................................................................................... 27 3.2教學影片的觀察.....................................................……………….......... 28 3.3特徵值的選用.....................................................……………….......…... 32 3.4判斷方法詳述............………………………...................……………… 34 3.4.1YDC-image………………………………...................................... 34 3.4.2 判斷運算式說明………………………....................................... 35 3.5 投影片切換偵測範例................……..............................……………… 38 3.6教學影片主要畫面判斷技術總結….........................................….......... 42 第四章 實驗結果與分析..................................................................................... 44 4.1實驗流程說明...............................................…….................................... 44 4.2評估方式..............................................................................................…. 44 4.3實驗影片及實驗環境說明....................................................................... 45 4.4實驗方法實作及數據說明....................................................................... 47 4.5實際教學現場錄製影片偵測結果及分析............................................... 52 第五章 結論與未來展望..................................................................................... 56 5.1結論................................................................................................................56 5.2未來展望........................................................................................................57 參考文獻......................................................................................................................61

    參考文獻
    [1] A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video search for object appearances,” Prc. of IFIP Second Workshop Conf. on Visual Database System II, Budapest, Hungary, pp. 113-127 , 1992.
    [2] B.L. Yeo and B. Liu, “Rapid scene analysis on compressed video,” IEEE Trans. On Circuits and System for Video Technology, vol. 5(6), pp. 533-544, 1995.
    [3] B. Shahraray, “Scene change detection and content-based sampling of video sequences,” Proc. of IS&T/SPIE conf. on Digital Video Compression: Algorithms and Technologies, vol. 2419, San Jose, CA, pp. 2-13, 1995.
    [4] C. W. Ngo, F. Wang, and T. C. Pong, “Structuring Lecture Videos for Distance Learning Application,” Proc. of the IEEE 15th International Symposium on Multimedia Software Engineering, Taichung, Taiwan, pp. 215-222, 2003.
    [5] C. W. Ngo, T. C. Pong, and T. S. Huang, “Detection of Slide Transitionfor Topic Indexing,” Proc. of IEEE International Conf. on Multimedia Expo, Lansanne, Switzerland, pp.533-536, 2002.
    [6] D. Zhang, W. Qi and H. J. Zhang, “A New Shot Boundary Detection Algorithm,” Proc. of IEEE Pacific Rim Conference on Multimedia ,Beijing, China, p.63-70, 2001.
    [7] E. Ardizzone, G. Gioiello, M. Cascia and D. Molinelli, “A real-time neural approach to scene cut detection,” Proc. of IS&SPIE – Storge and Retrieval for Image and Video Databases IV, San Jose, CA, 1996.
    [8] F. Arman, A. Hsu, and M. Y. Chiu, “Image processing on compressed data for large video databases,” Proc. of 1th ACM Conf. on Multimedia, Anaheim, CA, pp. 267-272, 1993.
    [9] F. W.ang, C. W. Ngo, and T. C. Pong, “Gesture Tracking and Recognition for Lecture Video Editing,” Proc. of the 17th International Conference on Pattern Recognition, Cambridge, UK, pp. 934-937 2004
    [10] F. Wang, C. W. Ngo, and T. C. Pong, “Synchronization of Lecture Videos and Electronic Slides by Video Text Analysis, “Proc.of ACM International Conference on Multimedia, California, USA, pp.315-318, 2003.
    [11] G. Abowd et. al.“Teaching and Learning as Multimedia Authoring: The Classroom 2000 Project,” ACM Journal of Multimedia, pp.187-198, 2000.
    [12] G.. C. Lee, and M. N.Tsai, “ An efficient slide-changing detection algorithm for MPEG coded lecture videos,” Proc. of the 2th IASTED International Conf. on Visualization, Imaging, and Image Processing, p.233 –238, Malaga, Spain, 2002
    [13] H. C. Liu and G. L. Zick, “Automatic determination of scene changes in MPEG compressed video,” Proc. of ISCAS-IEEE International Symposium on Circuits and Systems, vol. 1, Seattle, USA, pp. 764-767, 1995.
    [14] H. J. Zhang, C. Y. Low, and S. W. Smoliar, “Video Parsing, Retrieval and browsing: An integrated and content-based solution,” Proc. of ACM Conf. on Multimedia, San Francisco, USA, pp. 15-24, 1995.
    [15] H. J. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic partitioning of full-motion video,” ACM Journal of Multimedia Systems, vol. l(1), pp. 10-28, 1993.
    [16] I. Koprinska and S. Carrato, “Hybrid rule-based/neural approach for segmentation of MPEG compressed video,” International Journal of Media Tools and Applications, 2000
    [17] J. D. Bransford, R. D. Sherwood, C. K. Kinzer, and T. S. Hasselbring, “Havens for learning: Toward a framework for developing effective uses of technology,” ERIC Report Production Service No. ED 262752, 1985.
    [18] J. Meng, Y. Juan, and S.F. Chang, “Scene change detection in a MPEG compressed video sequence,” Proc. of IS&T/SPIE conf. on Digital Video Compression: Algorithms and Technologies, vol. 2419, San Jose, CA, pp. 14-25, 1995.
    [19] J. Wei, M. Drew and Z. Li, “Illumination invariant video segmentation by hierarchical robust thresholding,” Proc. of IS&T/SPIE Conf. Storage and Retrieval for Image and Video Database VI, San Jose, CA, USA,pp. 188-201, 1997
    [20] K. Shen and E. J. Delp, “A fast algorithm for video parsing using MPEG compressed data,” Proc. of IEEE International Conf. on Image Processing, vol. 2, Washington, D. C., pp. 14-25, 1995.
    [21] M. J. Bruning, “VIS: Technology for multicultural teacher education,” TechTrends, vol. 37(1), pp. 13-14, 1992.
    [22] M. Lin, M. Chau, J. F. Nunamaker Jr., and H. Chen,” Segmentation of Lecture Videos Based on Text: A Method Combining Multiple Linguistic Features” Proc. of the 37th International Conf. on System Sciences, Hawaii, pp. 1-9, 2004
    [23] N. V. Patel and I. K. Sethi, “Compressed video processing for cut detection,” Proc. of IEEE Vision, Image and Signal Processing, vol. 143, pp. 315-323, 1996
    [24] O. Fatemi, S.Zhang and Panchanathan, “Optical flow based model for scene cut detection,” Canadian Conference on Electrical and Computer Engineering, vol.1, Calgary, Alta., Canada, pp. 470-473, 1996.
    [25] R. Zabith, J. Miler, and K. Mai, “A feature-based algorithm for detecting and classifying production effects,” ACM Journal of Multimedia Systems, vol. 7(2), pp. 119-128 1999.
    [26] R. Zabih, J. Miller, and K. Mai. “A Feature-Based Algorithm for Detecting and Classifying Scene Breaks,” Proc. of ACM Multimedia, San Francisco, CA,USA, pp. 189-200, 1995.
    [27] S. C. Pei and Y. Z. Chou, “Efficient MPEG compressed video analysis using macroblock type information,” IEEE Transactions on Multimedia, vol. 14, pp. 321-333, 1999.
    [28] S. Mukhopadhyay, and B. Smith, ”Passive Capture and Structuring ofleetures,” ACM Journal of Multimedia, pp. 477-487. 1999,
    [29] S. X. Ju, M. J. Black, S. Minneman, and D. Kimber, “Summarization of Videotaped Presentations: Automatic Analysis of Motion and Gesture,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, pp. 686-696, 1998
    [30] T. S. Mahmood, and S. Srinivasan, “Detecting topical events in digital video” ACM Journal of Multimedia,, pages 85–94, 2000
    [31] 中山大學-網路大學 http://cu.nsysu.edu.tw/
    [32] 暨南大學-語音網頁同步遠距教學系統http://wsml.csie.ncnu.edu.tw/
    [33] Stanford online http://stanford-online.stanford.edu/
    [34] Georgia Technology http://www.cc.gatech.edu/
    [35] 國立臺灣師範大學資訊教育系影片輔助學習網站http://vip.ice.ntnu.edu.tw/
    [36] 廖桂華(民90):MPEGI/II影片自動擷取主要畫面研究。國立臺灣師範大學資訊大學教育研究所碩士論文。

    QR CODE