簡易檢索 / 詳目顯示

研究生: 柴心堯
Chai, Hsin-Yao
論文名稱: 臺灣地區秋老虎事件之診斷分析與其長期趨勢
Diagnosis and Long-term Trend of Qiu Laohu Events In Taiwan
指導教授: 翁叔平
Weng, Shu-Ping
口試委員: 翁叔平
Weng, Shu-Ping
洪志誠
Hong, Chih-Cheng
陳永明
Chen, Yung-Ming
口試日期: 2025/01/10
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 136
中文關鍵詞: 秋老虎西北太平洋副熱帶高壓北半球夏季季內振盪經驗正交函數分析
英文關鍵詞: Indian Summer Day, Western North Pacific Subtropical High, Boreal Summer Intra-Seasonal Oscillation, Empirical Orthogonal Function
研究方法: 實驗設計法個案研究法
DOI URL: http://doi.org/10.6345/NTNU202500099
論文種類: 學術論文
相關次數: 點閱:12下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「秋老虎」現象指的是中國傳統節氣「立秋」後的回暖天氣,在西方則稱為「Indian Summer Day」。各地對其定義有所不同,更沒有明確的操作型定義。本研究基於1979~2022年間17個中央氣象署的臺灣氣象測站的氣溫數據定義了一個篩選秋老虎事件的框架,並利用ERA5、TReAD、NCEP R1等資料庫,探討影響副熱帶高壓的熱帶低頻振盪及區域次環流。
    透過氣溫變率,本研究發現氣溫在入秋後下降趨勢中於立秋後出現小幅回升或停頓,證實「秋老虎」為一氣候現象。而在本研究建立的篩選框架確定了138個秋老虎事件樣本。這些樣本在臺灣各地有相對均勻的分布,且在21世紀後事件數量顯著增長,顯示副熱帶高壓勢力的西移強化與氣候暖化之間存在一定關聯性。
    利用擴展經驗正交函數分析揭示了三種主要的副熱帶高壓擾動模式:副高西移型展示了副熱帶高壓的向西延伸;東風駛流型顯示副熱帶高壓位於東北亞並伴隨其南側低壓擾動的東風沉降;副高滯留型則呈現副熱帶高壓在長期趨勢下增強的表現。以上三個模態透過ERA5、NCEP R1、TReAD資料庫組合分析驗證了空間分布特徵與觀測資料的一致性,顯示三個模態具有代表性。
    本研究進一步探討BSISO1、BSISO2與副熱帶高壓之間的交互作用。本研究推測BSISO1的對流抑制相位可能會通過增強下沉運動來加強副熱帶高壓的穩定性和強度。而BSISO2對副熱帶高壓的影響有限,主要因其10至20天的短週期及活動範圍集中於赤道附近,作用偏重局地對流與短期擾動,對高壓系統的整體影響較小。

    The "Qiu Laohu" phenomenon refers to the warming weather occurring after the Chinese traditional solar term "Beginning of Autumn" , which is known in the West as "Indian Summer Day." Definitions of this phenomenon vary across regions, and it lacks a clear operational definition. We developed a framework to identify Qiu Laohu events based on temperature data from 17 meteorological stations in Taiwan managed by the Central Weather Bureau during the period from 1979 to 2022. Additionally, we utilized datasets such as ERA5, TReAD, and NCEP R1 to investigate the influence of tropical low-frequency oscillations and regional secondary circulations on the subtropical high.
    Through temperature variability analysis, we observed a slight rebound or stagnation in temperature after the "Start of Autumn" within an overall declining trend, confirming Qiu Laohu as a distinct climatic phenomenon. Using the selection framework we established, we identified 138 Qiu Laohu event samples. These samples are relatively evenly distributed across Taiwan, and their frequency significantly increased after the 21st century, suggesting a potential link between the westward intensification of the subtropical high and global warming.
    Using Extended Empirical Orthogonal Function (EEOF) analysis, we revealed three primary disturbance patterns of the subtropical high. The westward extension pattern exhibits the westward elongation of the subtropical high; the easterly drift pattern positions the subtropical high over Northeast Asia, accompanied by easterly subsidence influenced by a low-pressure disturbance to its south; and the stationary pattern reflects the strengthening and static behavior of the subtropical high under long-term trends. These three patterns were validated through composite analysis using ERA5, NCEP R1, and TReAD datasets, demonstrating consistency between their spatial distribution features and observational data, confirming their representativeness.
    We further examined the interactions between BSISO1, BSISO2, and the subtropical high. We hypothesize that during the suppressed convective phases of BSISO1, enhanced subsidence may contribute to the stability and intensity of the subtropical high. In contrast, BSISO2's influence on the subtropical high is limited, primarily due to its shorter cycle of 10 to 20 days and its activity being concentrated near the equator. BSISO2 mainly affects local convection and short-term disturbances, exerting relatively little influence on the overall subtropical high system.

    謝辭 摘要 i ABSTRACT ii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第二章 文獻回顧 5 第一節 秋老虎日(Indian Summer Day, ISD) 5 第二節 西北太平洋副熱帶高壓(Western North Pacific Subtropical High, WNPSH) 9 第三節 北半球夏季季內振盪(Boreal Summer Intra-Seasonal Oscillation, BSISO) 11 第三章 研究資料及研究方法 16 第一節 研究資料 16 第二節 研究方法 20 第四章 臺灣二十四節氣長期氣候趨勢及秋老虎事件統計 26 第一節 二十四節氣氣溫趨勢分析 26 第二節 秋老虎事件樣本描述統計 26 第三節 副熱帶高壓活動及變遷 30 第五章 臺灣秋老虎事件天氣診斷分析 31 第一節 秋老虎事件樣本經驗正交函數分析 31 第二節 異常組合分析結果 35 一、 ERA5異常組合分析結果 36 二、 TReAD異常組合分析結果 38 第六章 北半球夏季季內振盪對臺灣秋老虎事件之影響 41 第一節 BSISO1的影響 41 第二節 BSISO2的影響 48 第七章 結論與建議 54 第一節 結論 54 第二節 後續研究建議 58 參考文獻 60 中文部分 60 外文部分 61 附表 66 附圖 72

    中文部分
    余嘉裕、涂建翊、許惠雯(2003):〈熱帶 30~60 天週期振盪:海面蒸發之角色〉。《大氣科學》,31,95-113。
    吳國雄、丑紀範、劉屹岷、何金海(2002):《副熱帶高壓形成和變異的動力學問題》。科學出版社。
    吳國雄、劉屹岷(2000):〈熱力適應、過流、頻散和副高 Ⅰ.熱力適應和過流〉。《大氣科學》,24(4),433-446。
    李富城(2017年11月7日):〈什麼是秋老虎 秋老虎一詞,只有中國人才會這麽說〉。〔動態貼文〕。Facebook。https://www.facebook.com/james1935/posts/10214743624850590
    林永清、葉姿妤、方詠俞、林遠見(2022). 以擴展經驗正交函數法分析屏東平原地下含水層時空變化特徵. 中國土木水利工程學刊, 34(7), 639-648.
    林秉毅、鄭兆尊(2021). 臺灣歷史氣候重建資料庫。出處為:臺灣氣候變遷推估資訊與調適知識平台
    許晃雄、吳宜昭、周佳、陳正達、陳永明、盧孟明(2011):臺灣氣候變遷科學報告2011。TCCIP臺灣氣候變遷推估資訊與調適知識平臺。
    湖北省公眾氣象服務中心科普部(2022年9月7日):〈【原創科普文章】“秋老虎”知多少〉。湖北省氣象局。
    楊智閔(2018年7月3日):〈重分析資料與氣象研究之應用〉。TCCIP。
    鄧麗婷(2016年8月10日):〈立秋後勁熱「秋老虎」真來了?天文臺前高層:未必咁準〉。香港01。
    盧孟明(1995):〈TOGA COARE IOP 期間大氣低頻擾動之特性〉。《大氣科學》,23,65-91。
    應明、孫淑清(2000):〈西太平洋副熱帶高壓對熱帶海溫異常響應的研究〉。《大氣科學》,24(2),193-206。
    戴德(1966):《夏小正箋及其他四種》。臺灣商務。
    顧祿(1976):《清嘉錄》。臺灣商務。
    龔道溢、何學兆(2002):〈西太平洋副熱帶高壓的年代際變化及其氣候影響〉。《地理學報》,57(2),185-193。
    外文部分
    Annamalai, H., and K. R. Sperber. (2005). Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. Journal of the Atmospheric Sciences, 62(8), 2726-2748.
    Boeckmann, C. (2023, October 11) Indian Summer Meaning: What is an Indian Summer or Second Summer? The Old Farmer's Almanac.
    Bourdin, H. L., Gabriel, R. H., Williams, S. T. (Eds.) (1925). Sketches of Eighteenth Century America: More “Letters from an American Farmer”, 41-50.
    D. H. McIntosh, M.A., D.Sc. (Eds.). (1963). Meteorological Glossary. Met Office.
    Gong, D-Y., and C-H. Ho. (2002). Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophysical Research Letters, 29(10), 78-1 – 78-4.
    Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(9), 1119-1152.
    Hekkelman, J. (2020, September 11) Kranenzomer. Lokaal Gelderland.
    Heranz E. (2015, September 22). El «veranillo de San Miguel» se alargará hasta finales de la semana. ABC Sociedad.
    Hoyos, C. D., and P. J. Webster. (2007). The role of intraseasonal variability in the nature of Asian monsoon precipitation. Journal of Climate, 20(17), 4402-4424.

    Hu, Z-Z., (1997). Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. Journal of Geophysical Research: Atmospheres , 102 (D16).
    Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
    Indian Summer (2020). In AMS Glossary of Meteorology. Retrieved from https://glossary.ametsoc.org/wiki/Indian_summer
    Kemball-Cook, S., and B. Wang. (2001). Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. Journal of Climate, 14(13), 2923-2942.
    Kikuchi, K. (2020). Extension of the bimodal intraseasonal oscillation index using JRA-55 reanalysis. Climate Dynamics, 54, 919-933.
    Kikuchi, K. (2021). The Boreal Summer Intraseasonal Oscillation (BSISO): A Review. Journal of the Meteorological Society of Japan. Ser. II, 99(4), 933-972.
    Kikuchi, K., B. Wang, and Y. Kajikawa. (2012). Bimodal representation of the tropical intraseasonal oscillation. Climate Dynamics, 38, 1989-2000.
    Knutson, R. R., K. M. Weickmann, and J. E. Kutzbach (1986). Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Monthly Weather Review, 114(3), 605–623.
    Laskow S. (2016, October 18). Let’s Choose a New Name for ‘Indian Summer’. Atlas Obscura.
    Lau, K.-M., and P. H. Chan. (1985). Aspects of the 40–50day oscillation during the northern winter as inferred from outgoing longwave radiation, Monthly Weather Review, 113(11), 1889–1909.
    Lee, J.-Y., Wang, B., Wheeler, M.C., Fu, X., Waliser, D.E., Kang, I.-S. (2013). Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 40, 493-509.
    Li, J., R. Yu, T. Zhou, and B. Wang, (2005). Why is there an early spring cooling shift downstream of the Tibetan Plateau? Journal of Climate, 18(22), 4660–4668.
    Li, W., L. Li, M. Ting, and Y. Liu (2012). Intensification of Northern Hemisphere subtropical highs in a warming climate. Nature Geoscience, 5, 830–834.
    Liu, Y., Wu, G. & Ren. (2004). Relationship between the subtropical anticyclone and diabatic heating. Journal of Climate, 17(4), 682–698.
    López A. (2007, September 29). ¿Qué es el ‘Veranillo de San Miguel’ (también conocido como veranillo del membrillo)? 20minutos.
    Madden, R. A., and P. R. Julian. (1971). Detection of a 40–50day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702-708.
    Madden, R. A., and P. R. Julian. (1972). Description of globalscale circulation cells in the tropics with a 40–50day period. Journal of the Atmospheric Sciences, 29(6), 1109-1123.
    Matthews A. (1902). SPECIAL CONTRIBUTIONS THE TERM INDIAN SUMMER. Monthly Weather Review, 30(1), 19-28.
    National Center for Atmospheric Research Staff (Eds). Last modified 2022-11-07 “The Climate Data Guide: NCEP-NCAR(R1): An Overview.” Retrieved from https://climatedataguide.ucar.edu/climate-data/ncep-ncar-r1-overview on 2025-01-13.
    Sengupta, D., B. N. Goswami, and R. Senan. (2001). Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophysical Research Letters, 28(21), 4127-4130.
    Sikka, D. R., and S. Gadgil. (1980). On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Monthly Weather Review, 108(11), 1840-1853.
    Sperber, K. R., and H. Annamalai. (2008). Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics. Climate Dynamics, 31, 345-372.
    Stocker, T. F., Qin D. , Gian-Kasper Plattner, Melinda M.B. Tignor, Allen, S. K., Boschung J. , Nauels A. , Xia Y., Bex V., Pauline M. Midgley. (2013). Climate Change 2013:The Physical Science Basis. 3-33.
    Wang, B., and X. Xie. (1997). A model for the boreal summer intraseasonal oscillation. Journal of the Atmospheric Sciences, 54(1), 72-86.
    Wang, B., P. Webster, K. Kikuchi, T. Yasunari, andY. Qi. (2006). Boreal summer quasi-monthly oscillation in the global tropics. Climate Dynamics, 27, 661-675.
    Wang, H., (2001). The weakening of Asian monsoon circulation after the end of 1970’s. Advances in Atmospheric Sciences, 18(3), 376–386.
    Weare, B. C., & Nasstrom, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6), 481-485.
    Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach. (1985). Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb stream function during northern winter. Monthly Weather Review, 113(6), 941-961.
    William R. Deedler. (1996). JUST WHAT IS INDIAN SUMMER AND DID INDIANS REALLY HAVE ANYTHING TO DO WITH IT? National Weather Service Weather ForecastOffice.
    Wu, G. & Liu, Y. (2003).Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophysical Research Letters, 30(5), 5-1 – 5-4.
    Yasunari, T.. (1979). Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. Journal of the Meteorological Society of Japan. Ser. II, 57(3), 227-242.
    Yu, R., and T. Zhou. (2007). Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. Journal of Climate, 20(20), 5344–5355.
    Yu, R., B. Wang, and T. Zhou, (2004). Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophysical Research Letters, 31(22).
    Zhang, C. D. (2005). Madden-Julian Oscillation. Reviews of Geophysics, 43(2), RG2003.
    Zhou, T., and Coauthors. (2009). Why the western Pacific subtropical high has extended westward since the late 1970s. Journal of Climate, 22(8), 2199–2215.

    下載圖示
    QR CODE