簡易檢索 / 詳目顯示

研究生: 周明儒
Ming Ju Chou
論文名稱: 第二類超導體的三維臨界電流密度的計算與討論
The Calculation and Discussions in Three-Dimensional Critical Current Density in Type-II Superconductors
指導教授: 洪姮娥
Horng, Herng-Er
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 臨界電流密度集體釘扎磁通子動力學
英文關鍵詞: Critical current density, collective pinning, vortex dynamics
論文種類: 學術論文
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於超導實用性的目地, 臨界電流密度 Jc, 一直以來都是超導理論與實驗, 最關注的議題之一, 此篇博士論文題目為”第二類超導體的三維臨界電流密度的計算與討論The Calculation and Discussions in Three-Dimensional Critical Current Density in Type-II Superconductors”, 將採用量子統計方法, 針對第二類超導體的三維集體釘扎量子與熱擾動(quantum and thermal fluctuations on collective pinning), 和臨界電流密度(critical current density)Jc 作理論計算.

    經過我們的詳細理論計算顯示, 當考慮外加磁場為常數, 臨界電流密度(critical current density) Jc , 在量子極限下, 是幾乎與溫度無關的; 然而在古典極限下(in classical limit),當溫度區間在 T<T_dp, 去釘扎溫度 (depinning temperature), 臨界電流密度 Jc 是微弱的隨溫度增加而減少, 當溫度區間在 T_dp< T< T_f,邊界漲落溫度(boundary fluctuation temperature), 該溫度相依的(temperature-dependence) 臨界電流密度 Jc , 則為乘冪型式遞減 (form of power law); 然而在溫度區間為 T>T_f 時, 臨界電流密度 Jc, 則隨溫度增加呈現指數型式快速衰減 (decays exponentially). 但是在考慮溫度為一常數時, 當外加磁場增加時,臨界電流密度 Jc 則呈現出, 最初減少隨後增加, 在達到一極大值後,最後再減少的行為.

    我們的詳細理論計算結果,經與實驗作比較,計算結果確與實驗一致.

    The title of this Ph. D. thesis is “The Calculation and Discussions in Three-Dimensional Critical Current Density in Type-II Superconductors”. The critical current density Jc of superconductors has been one of the most important topics both theoretically and experimentally due to its important in applications. We shall study the quantum, thermal fluctuations on collective pinning and critical current density Jc for three-dimensional superconducting bulk materials by utilizing quantum statistics.

    After detailed theoretical calculations and discussions, it is shown that Jc is nearly independent of temperature in the quantum limit for a constant magnetic field; however, in the classical limit,Jc decreases weakly with increasing temperature when T<T_dp the depinning temperature, when T_dp<T<T_f boundary fluctuation temperature,Jc is power law decaying, while T>T_f , Jc decays exponentially. For a constant temperature,Jc decreases first then increases after reaching a maximum, finally decreases again as the applied magnetic field increases.

    These results are in agreement with the experiments.

    目錄 口試委員會審定書 1 誌謝 2 中文摘要 3 英文摘要 4 第一章: 簡介 6 第二章: 磁通子動力學與臨界電流密度 19 第三章: 第二類超導體磁通晶格的數學計算模型 25 第四章: 三維臨界電流密度的理論計算方法結果與討論 30 第五章: 結論 37 附錄 39 參考文獻 56

    參考文獻

    1. H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 120b, 122b (1911).
    2. W. Meissner and R. Ochsenfeld, Naturwiss 21, 787 (1933).
    3. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).
    4. C. J. Gorter and H. B. G. Casimir, Physica 1, 306 (1934).
    5. F. London, and H. London, Proc. Roy. Soc. A149, 71 (1935).
    6. L. D. Lnadau, Phys. Z. Sowjetunion 11, 129 (0937).
    7. V. L. Ginzgurg and L. D. Landau, Soviet Phys. JETP 20, 1064 (1950).
    8. H. Fröhlich, Phys. Rev. 79, 845 (1950);
    H. Fröhlich, Proc. Roy. Soc. A 63, 778 (1950).
    9. E. Maxwell, Phys. Rev. 78, 477 (1950).
    10. C. A. Reynolds, B Serin, W. H. Wright and L. B. Neslitt, Phys. Rev. 78, 487 (1950).
    11. L. N. Cooper, Phys. Rev. 104, 1189 (1956).
    12. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
    13. A. A. Abrikosov, Soviet Phys. JETP 5, 1174 (1957).
    14. W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133, A1226 (1964).
    15. P. G. De Gennes, Superconductivity of metals and alloys , Benjamin, New York, 1966.
    16. M. Tinkham, Introduction to superconductivity, McGraw-Hill, New York, 1975.
    17. J. R. Schrieffer, Theory of Superconductivity, Benjamin, New York, 1964.
    18. A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972) and references therein.
    19. E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995).
    20. L. P. Gor’kov, J. Exp. Theor. Phys. U. S. S. R. 37, 1407 (1959).
    21. R. Labusch, Phys. Lett. 22, 9 (1966).
    22. H. Tr uble and U. Essmann, Phys. Stat. Sol. 25, 373 (1968).
    23. E. H. Brandt, J. Low Temp. Phys. 26, 709 (1977);
    E. H. Brandt, J. Low Temp. Phys. 26, 735 (1977);
    E. H. Brandt, J. Low Temp. Phys. 28, 263 (1977);
    E. H. Brandt, J. Low Temp. Phys. 28, 291 (1977).
    24. A. I. Larkin and Yu. N. Ochinnikov, J. Low. Phys. 34, 409 (1979).
    25. W. Y. Chen and S. Y. Chang, Chin. J. Phys. 31, 1019 (1993).
    26. W. Y. Chen and M. J. Chou, Phys. Lett. A 280, 371 (2001).
    27. W. Y. Chen and M. J. Chou, in Superconducting Cuprates: Properties, Preparation and Applications, ed. K. N. Courtlandt, Nova Science Publishers, NewYork, 2009, p. 213.
    28. W. Y. Chen and M. J. Chou, in Magnesium Diboride (MgB2)
    superconductor Research, ed. S. Suzuki and K. Fukuda, Nova Science Publishers, New York, 2009, p. 153.
    29. W. Y. Chen and M. J. Chou, Phys. Lett. A 276, 145 (2000).
    30. W. Y. Chen and M. J. Chou, Phys. Lett. A 291, 315 (2001).
    31. W. Y. Chen, M. J. Chou and S. Feng, Phys. Lett. A 310, 80 (2003).
    32. W. Y. Chen, M. J. Chou and S. Feng, Phys. Lett. A 316, 261 (2003).
    33. M. J. Chou and W. Y. Chen, Phys. Lett. A 332, 405 (2004).
    34. W. Y. Chen, M. J. Chou and S. Feng, Phys. Lett. A 342, 129 (2005).
    35. W. Y. Chen and M. J. Chou, Supercond. Sci. Technol. 15, 1017 (2002).
    36. W. Y. Chen and M. J. Chou, Supercon. Sci. Tech. 19, 237 (2006).
    37. W. Y. Chen, M. J. Chou, and S. Feng, Physica C 460-462, 1236 (2007).
    38. W. Y. Chen, The Open Superconductors Journal 2, 12 (2010).
    39. M. J. Chou and H. E. Horng, Annalen der Physik 19, 128 (2010).
    40. M. J. Chou and H. E. Horng, (accepted by IJMPB-Intenational Journal of Modern Physics B).
    41. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
    42. J. Friedel, P. G. De Gennes, and J. Matricon, Appl. Phys. Lett. 2, 119 (1963).
    43. J. Silcox and R. W. Rolins, Appl. Phys. Lett. 2, 231 (1963).
    44. C. J. Gorter, Phys. Lett. 1, 69 (1962); C. J. Gorter, Phys. Lett. 2, 26 (1962).
    45. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. Lett. 9, 306
    (1962);Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 131, 2468 (1962).
    46. C. Michel, L. Er-Rakho and B. Raveau, Mat. Res. Bull. 20, 667 (1985).
    47. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
    48. W. H. Keesom, Rapp et al., Disc 4e Congr. Phys. Solvay 288 (1924).
    49. A. J. Rutgers, Physica 1, 1055 (1934); ibid, 3, 999 (1936).
    50. C. J. Gorter and H. B. G. Casimir, Phys. z. 35, 963 (1934).
    51. A. B. Pippard, Proc. Roy. Soc. A216, 547 (1953).
    52. W. H. Keesom and P, H. Van Laer, Physica 4, 487 (1937).
    53. W. S. Corak et al., Phys. Rev. 96, 1442 (1954);
    Phys. Rev. 99, 1660 (1954); Phys. Rev. 102, 656 (1956).
    54. C. P. Poole, H. A. Farach and R. J. Creswick, Superconductivity, Academic Press, California, 1995.
    55. H. C. Yang, L. M. Wang, and H. E. Horng, Phys. Rev. B 59, 8956 (1999).
    56. H. C. Yang, L. M. Wang, and H. E. Horng, Phys. Rev. B 64, 174415 (2001).
    57. X. J. Chen and H. Q. Lin, Phys. Rev. B 69, 104518 (2004).
    58. H. Zheng, Phys. Rev. B 50, 6717 (1994).
    59. C. D. Batista, J. E. Gubernatis, J. Bonca and H. Q. Lin, Phys. Rev. Lett. 92, 187601 (2004).
    60. H. Zheng, S. Y. Zhu, and W. Y. Chen, Phys. Rev. B 65, 014304 (2001).
    61. W. Q. Ning, H. Zhao, C. Q. Wu, and H. Q. Lin, Phys. Rev. Lett. 96, 156402 (2006).
    62. H. Zheng and K. H. Bennemann, Phys. Rev. B 46, 11993 (1992).
    63. A. Houghton, R. A. Pelcovits, and A. Sudbψ, Phys. Rev. B 40, 6763 (1989).
    64. D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 9153 (1989).
    65. M. A. Moore, Phys. Rev. B 39, 136 (1989).
    66. P. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983).
    67. V. M. Vinokur, P. H. Kes, and A. E. Koshelev, Physica C 168, 29 (1990).
    68. M. V. Feigel’man and V. M. Vinokur, Phys. Rev. B 41, 8986 (1990).
    69. E. H. Brandt, Physica C, 195, 1 (1992).
    70. M. W. Coffey and J. R. Clem, Phys. Rev. B 44, 6903 (1991).
    71. R. Labusch, Phys. Stat. Sol. 19, 715 (1967);
    R. Labusch, Phys. Stat. Sol. 32, 439 (1969).
    72. R. E. Peierls, Ann. Phys. Leipzig 4, 121 (1930).
    73. H. Fröhlich, Proc. Roy. Soc. A 223, 296 (1654).
    74. W. Fogle and H. Perlstein, Phys. Rev. B 6, 1402 (1972).
    75. H. Küpfer, Th. Wolf, C. Lessing, A. A. Zhukov, X. Lançon, R. Meier-Hirmer, W. Schauer, and H. Wühl, Phys. Rev. B 58, 2886 (1998).
    76. J. J. Chieh, I. S. Lin, S. Y. Yang, H. E. Horng, C. Y. Hong, and H. C. Yang, Supercond. Sci. Technol. 22, 015015 (2009).
    77. C. C. Wu, B. F. Hong, B. H. Wu, S. Y. Yang, H. E. Horng, H. C. Yang, and W. Y. Tseng, Appl. Phys. Lett. 90, 54111 (2007).
    78. H. E. Horng, S. Y. Yang, C. M. Liu, P. S. Tsai, C. Y. Hong, and C. C. Wu, Appl. Phys. Lett. 88, 25206 (2006).
    79. C. Y. Hong, C.C. Wu, S. Y. Yang, Y. C. Chiu, H. E. Horng, and H. C. Yang, Appl. Phys. Lett. 88, 212512 (2006).
    80. H. C. Yang, T. Y. Wu, H. E. Horng, C. C . Wu, S. Y. Yang, S. H. Liao, C. H. Wu, J. T. Jeng, J. C. Chen, K. L. Chen, and M. J. Chen, Supercond. Sci. Technol. 19, S279 (2006).
    81. B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, Phys. Rev. 95, 1435 (1954).
    82. J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).
    83. R. Doll and M. Näbauer, Phys. Rev. Lett. 7, 51 (1962).
    84. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).
    85. Y. Nambu, Phys. Rev.117, 648 (1960).
    86. J. E. Kunzler, Rev. Mod. Phys. 33, 506 (1961).
    87. B. D. Josephson, Phys. Lett. 1, 251 (1962);
    B. D. Josephson, Rev. Mod. Phys. 36, 216 (1964);
    B. D. Josephson, Adv. Phys. 14, 419 (1965).
    88. P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963); Nature 318, 162 (1985).
    89. W. S. Goree and M. Fuller, Rev. Geophysics and Space Physics 14, 591 (1976).
    90. D. Cohen, E. A. Edelsack and J. E. Zimmerman, Appl. Phys. Lett. 16, 278 (1970).
    91. S. J. Williamson, L. Kaufman, J. Magnetism and Magnetic Materials 22, 129 (1981), and references therein.
    92. S. Bermon and D. M. Ginsberg, Phys. Rev. 135, A306 (1964).
    93. J. M. Rowell and L. Kopf, Phys. Rev. 137, 907 (1965).
    94. G. Bergmann, Phys. Reports, 27C, 1 (1976).
    95. D. S. Scalapino, in Superconductiviy, vol 1, ed. R. D. Parks, 1969.
    96. U. Essmann and H. Tr uble, Phys. Letters. 24A, 526 (1967).
    97. P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 59, 2592 (1987).
    98. G. M. Eliasberg, Soviet Phys. JETP 11, 696 (1960).
    99. L. V. Shubinkov et al., Zh. Eksp. Tero. Fiz. 1, 221 (1937).
    100. J. D. Liringstone, Phys. Rev. 129, 1943 (1963).
    101. H. Tr uble and U. Essmann, J. Appl. Phys. 39, 4052 (1968).
    102. H. Tr uble and U. Essmann, Phys. Stat. Sol. 18, 813 (1966).
    103. U. Essmann and H. Tr uble, Phys. Stat. Sol. 32, 337 (1969).
    104. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001).
    105. P. W. Anderson, Science 235, 1196 (1987).
    106. P. W. Anderson, the Theory of Superconductivity in the High-Tc Cuprates, Princeton University press, 1997.
    107. M. Tinkham, Phys. Rev. Lett. 13, 804 (1964).
    108. P. Tripodi, D. D. Gioacchino and J. A. Vinko, Int. J. Mod. Phys. B18-19, 3343 (2007).
    109. M. A. R. LeBlanc and W. A. Little, Proc. of the Seven Int. Conf. on Low Temperature Physics (University of Toronto Press, Toronto, 1960), p. 198.
    110. R. Wördenweber, P. H. Kes, and C. C. Tsuei, Phys. Rev. B 33, 3172 (1986).
    111. W. K. Kwok, J. A. Fendrich, C. J. van der Beek, and G. W. Crabtree, Phys. Rev. Lett. 73, 2614 (1994).
    112. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karpinski, B. Birajdar, O. Eibl, and H. W. Weber, Phys. Rev. B 69, 054510 (2004).
    113. A. K. Niessen and F. A. Staas, Phys. Lett. 15, 26 (1965).
    114. J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).
    115. A. G. Van Vijfeijken and A. K. Niessen, Phys. Lett. 61, 23 (1965); P. Nozie’res and W. F. Vinen, Philos. Mag. 14, 667 (1966).
    116. A. T. Fiory, Phys. Rev. B 8, 5039 (1973).
    117. D. Dew-Hughes, Cryogenics 28, 674 (1988).
    118. A. K. Niessen, F. A. Staas, and C. H. Weijsenfeld, Phys. Lett. 25A, 33 (1967); C. H. Weijsenfeld, Phys. Lett. 28A, 362 (1968).
    119. G. Lasher, Phys. Rev. 140, A523 (1965).
    120. E. J. Kramer, J. Appl. Phys. 49, 742 (1978).
    121. M. R. Beasley, R. Labusch, and W. W. Weber, Phys. Rev. 181, 682 (1969).
    122. T. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).
    123.W. E. Lawrence and S. Doniach, Proc. 12th Internatl. Conf. of Low Temperature Physics LT 12 (E. Kanda, Academic Press of Japan, Kyoto, 1971) p.361.
    124. A. W. Smith, T. W. Clinton, C. C. Tsuei, and C. J. Lobb, Phys. Rev. B 49, 12927 (1994).
    125. E. H. Brandt, Phys. Rev. Lett. 63, 1106 (1989);
    E. H. Brandt, J. Low Temp. Phys. 64, 375 (1986).
    126. L. I. Gazman and A. E. Koshelev, Phys. Rev. B 43, 2835 (1991).
    127. W. A. Reed, Fawcett, and Y. B. Kim, Phys. Rev. Lett. 14, 790 (1965).
    128. M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
    129. J. R. Clem, Phys. Rev. B 43, 7837 (1991).
    130. Y. Y. Chen, and Y. D. Yao et al., Phys. Rev. B 66, 212404 (2002).
    131. L. W. Su, C. S. Shern and Y. D. Yao, J. Appl. Phys. 95, 6568 (2004).
    132. S. Y. Huang, S. F. Lee, J. C. Huang, G. H. Hwang, and Y. D. Yao, J. Appl. Phys. 97, 10B103 (2005).
    133. S. J. Xiong, and Y. D. Yao, J. Phys.: Condensed Matter, 13, 7371 (2001).
    134. H.T.Cho, Phys. Rev. D 72, 065010 (2005);
    H. T. Cho and K. L. Ng, Phys. Rev. D 47, 1692 (1993).
    135. C. S. Liu and W. C. Wu, Phys. Rev. B 76, 220504R (2007).
    136. C. S. Liu, H. G. Lou, W. C. Wu, and T. Xiang, Phys. Rev. B 73, 174517 (2006).
    137. W. C. Wu, Phys. Rev. B 65, 052508 (2002).
    138. P. Lou, M. C. Chang and W. C. Wu, Phys. Rev. B 68, 012506 (2003).
    139. P. Lou, W. C. Wu and M. C. Chang, Phys. Rev. B 70, 64405 (2004).
    140. S. N. Artemenko and A. V. Kruglo, Phys. Lett. A 143, 485 (1990).
    141. G. P. Mikitik and E. H. Brandt, Phys. Rev. B 64, 184514 (2001).
    142. R. W. G. Wyckoff, Crystal Structures, Vol. 2, Wiley, New York, 1964.
    143. L. J. de Jongh, Physica C 152,171 (1988)
    144. D. W. Murphy et al., Phys. Rev. Lett. 58, 1888 (1987).
    145. W. H. Weber et al., J. Opt. Soc. Am. B 6, 455 (1989).
    146. Goodenough et al., Phys. Rev. B 47, 5275 (1993).
    147. W. H. Weber and G. W. Ford, Phys. Rev. B 40, 6890 (1989).
    148. Y. Tokura et al., Nature (London) 377, 345 (1989).
    149. B. Batlogg, Phys. Today 44, 44 (1991).
    150. D. A. Wollman et al., Phys. Rev. Lett. 71, 2134 (1993); 74, 797 (1995).
    151. C.C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1995).
    152. D. J. Scalapino, Physics Reports 250, 329 (1995).
    153. A. G. Loeser et al., Science 273, 325 (1996).
    154. H. Dinget al., Nature 382, 51 (1996).
    155. K. Takada et al., Nature 422, 53 (2003).
    156. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
    157. Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    158. C. Wang et al., Europhys. Lett. 83, 67006 (2008).
    159. W. A. Fertig et al., Phys. Rev. Lett. 38, 987 (1977).
    160. W. Roberts, J. Phys. Chem, Ref. Data 5, 581 (1976).

    下載圖示
    QR CODE