簡易檢索 / 詳目顯示

研究生: 黃梓沂
Huang, Zi-Yi
論文名稱: 知識追蹤應用於國小數學補救家庭教師系統之流程及設計
Workflow and Design of Primary School Mathematics Remedial Tutoring System Applying Knowledge Tracing
指導教授: 賴以威
Lai, I-Wei
口試委員: 賴以威
Lai, I-Wei
蘇崇彥
Su, Chung-Yen
謝佳叡
Hsieh, Chia-Jui
口試日期: 2023/12/12
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 90
中文關鍵詞: 家教系統知識追蹤大型語言模型數位學習
英文關鍵詞: tutoring systems, knowledge tacing, large language models, digital learning
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400025
論文種類: 學術論文
相關次數: 點閱:173下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新冠肺炎疫情的爆發對傳統教育模式構成了巨大挑戰,進而推動了數位學習(E-Learning)的興起。在這一背景下,知識追蹤技術(Knowledge Tracing: KT)因其協助數位學習發展的有效性而備受關注。本篇論文對注意力知識追蹤(Attentive Knowledge Tracing: AKT)模型實施架構上的改良,特別關注輸入特徵與預測特徵的選澤及特徵融合的架構。此外,我們還擴展了該模型的應用,實現了數學概念分類的可視化,以幫助數學教師驗證數學概念的分類。
    同時,本篇論文對教育部因材網以及均一教育平台這兩大線上教育平台進行綜合分析,並在發現大型語言模型(Large Language Model: LLM)於認知和理解方面上的優勢後,深入探討了其在教育領域中的應用。最終,本篇論文使用基於生成型預訓練變換模型4(Generative Pre-trained Transformer 4: GPT-4)的聊天型生成式預訓練轉換器(Chat Generative Pre-trained Transformer: ChatGPT)此聊天機器人,設計了專為國小數學補救的家庭教師系統。此系統能採用蘇格拉底提問的方式幫助學生深入理解知識,還能在結合AKT模型後,提供多樣化的題型,滿足不同程度的學生需求。
    本篇論文的綜合分析以及開發的國小數學補救家庭教師系統展示了知識追蹤技術和大型語言模型在教育領域中的潛在價值,為數位學習和教育創新提供了有力的支持。

    The outbreak of the COVID-19 pandemic has presented significant challenges to traditional education, prompting the emergence of E-Learning. In this context, Knowledge Tracing (KT) technology has garnered considerable attention for its effectiveness in supporting E-Learning. This paper focuses on architectural improvements to the Attentive Knowledge Tracing (AKT) model, with particular emphasis on the selection of input features and prediction features and the architecture for feature fusion. Furthermore, our research have extended the model's applications to achieve visualizations of mathematical concept classifications, aiding mathematics teachers in verifying the classification of mathematical concepts.
    Simultaneously, this paper provides a comprehensive analysis of two major online education platforms in Taiwan, and after discovering the advantages of large language models (LLMs) in terms of cognition and understanding, the applications of LLMs in the field of education are discussed in depth. Ultimately, the paper utilizes a chatbot based on the Generative Pre-trained Transformer 4 (GPT-4) model, known as Chat Generative Pre-trained Transformer (ChatGPT), to design a tutoring system specialized for the field of primary school mathematics remedy. This system assists students in deepening their understanding of knowledge through Socratic questioning. When combined with the AKT model, the system offers a variety of question types to cater to the varied needs of students.
    The comprehensive analysis and the development of the primary school mathematics remedial tutoring system in this paper demonstrate the potential value of KT technology and LLMs in the field of education, providing robust support for E-learning and educational innovation.

    第一章 介紹 1 1.1 研究動機 1 1.2 相關文獻 2 1.3 主要貢獻 7 1.4 論文架構 7 第二章 注意力知識追蹤模型的改良 8 2.1 注意力知識追蹤模型 8 2.2 資料集 11 2.3 系統架構的測試與改良 12 2.3.1 學習率調整 12 2.3.2 特徵融合方法 15 2.3.3 輸入特徵與預測特徵的選擇 18 2.4 模型改良成果總結與知識追蹤延伸應用探討 19 2.4.1 研究成果總結 19 2.4.2 知識追蹤應用探討 20 2.4.2.1 教育部因才網 20 2.4.2.2 均一教育平台 22 2.4.2.3 探討與總結 24 第三章 通過數學題目的特徵實現數學概念分類可視化 25 3.1 數學題目的特徵擷取 25 3.2 可視化方法 27 3.3 可視化成果 28 3.4 探討與總結 31 第四章 結合知識追蹤技術的國小數學補救家庭教師系統 33 4.1 大型語言模型綜述與教育延伸應用 33 4.1.1 大型語言模型綜述 33 4.1.2 聊天型生成式預訓練轉換器 35 4.1.3 教育延伸應用 36 4.2 系統設計過程 38 4.2.1 數學概念拆解與題目生成 38 4.2.2 系統架構圖及成果 41 4.2.3 跟 AKT 模型的連結 46 4.2.4 探討與總結 51 第五章 結論與未來研究 53 參考文獻 55 附錄 61 自傳與學術成就 90

    B. M. Amarneh, M. T. Alshurideh, B. H. Al Kurdi, and Z. Obeidat, “The impact of covid-19 on e-learning: Advantages and challenges,” in The international conference on artificial intelligence and computer vision, pp. 75–89, Springer, 2021.
    S. Pokhrel and R. Chhetri, “A literature review on impact of covid-19 pandemic on teaching and learning,” Higher education for the future, vol. 8, no. 1, pp. 133–141, 2021.
    A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural knowledge,” User modeling and user-adapted interaction, vol. 4, pp. 253–278, 1994.
    G. Abdelrahman, Q. Wang, and B. Nunes, “Knowledge tracing: A survey,” ACM Computing Surveys, vol. 55, no. 11, pp. 1–37, 2023.
    M. V. Yudelson, K. R. Koedinger, and G. J. Gordon, “Individualized bayesian knowledge tracing models,” in Artificial Intelligence in Education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings 16, pp. 171–180, Springer, 2013.
    P. I. Pavlik Jr, H. Cen, and K. R. Koedinger, “Performance factors analysis–a new alternative to knowledge tracing.,” Online Submission, 2009.
    C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. SohlDickstein, “Deep knowledge tracing,” Advances in neural information processing systems, vol. 28, 2015.
    L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, vol. 5, no. 64-67, p. 2, 2001.
    A. Graves and A. Graves, “Long short-term memory,” Supervised sequence labelling with recurrent neural networks, pp. 37–45, 2012.
    A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value memory networks for directly reading documents,” arXiv preprint arXiv:1606.03126, 2016.
    T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
    H. Ebbinghaus, “Memory: A contribution to experimental psychology,” Annals of neurosciences, vol. 20, no. 4, p. 155, 2013.
    A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
    A. Ghosh, N. Heffernan, and A. S. Lan, “Context-aware attentive knowledge tracing,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2330–2339, 2020.
    R. Abdelghani, P.-Y. Oudeyer, E. Law, C. de Vulpillières, and H. Sauzéon, “Conversational agents for fostering curiosity-driven learning in children,” International Journal of Human-Computer Studies, vol. 167, p. 102887, 2022.
    M. E. Gross, C. M. Zedelius, and J. W. Schooler, “Cultivating an understanding of curiosity as a seed for creativity,” Current Opinion in Behavioral Sciences, vol. 35, pp. 77–82, 2020.
    F. Guay, “Applying self-determination theory to education: Regulations types, psychological needs, and autonomy supporting behaviors,” Canadian Journal of School Psychology, vol. 37, no. 1, pp. 75–92, 2022.
    K. Chowdhary and K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelligence, pp. 603–649, 2020.
    I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
    M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoencoder,” in International conference on machine learning, pp. 1945–1954, PMLR, 2017.
    L. Rabiner and B. Juang, “An introduction to hidden markov models,” ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.
    D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
    F. M. Lord, Applications of item response theory to practical testing problems. Routledge, 2012.
    G. Rasch, Probabilistic models for some intelligence and attainment tests. ERIC, 1993.
    C. Pojen, H. Mingen, and T. Tzuyang, “Junyi academy online learning activity dataset: A large-scale public online learning activity dataset from elementary to senior high school students.,” Dataset available from https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy, 2020.
    WIKIPEDIA, “Receiver operating characteristic.” https://en.wikipedia.org/wiki/Receiver_operating_characteristic. Accessed: 2024-01-04.
    M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.
    EDU, “教育部因材網.” https://adl.edu.tw/HomePage/home/. Accessed: 2023-10-05.
    J. Academy, “均一教育平台.” https://www.junyiacademy.org/. Accessed: 2023-10-05.
    H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.
    L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine learning research, vol. 9, no. 11, 2008.
    M. Wattenberg, F. Viégas, and I. Johnson, “How to use t-sne effectively,” Distill, 2016.
    J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv: 1810.04805, 2018.
    Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language understanding,” Advances in neural information processing systems, vol. 32, 2019.
    C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.
    E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, et al., “Chatgpt for good? on opportunities and challenges of large language models for education,” Learning and individual differences, vol. 103, p. 102274, 2023.
    R. Dijkstra, Z. Genç, S. Kayal, J. Kamps, et al., “Reading comprehension quiz generation using generative pre-trained transformers,” 2022.
    R. Abdelghani, Y.-H. Wang, X. Yuan, T. Wang, P. Lucas, H. Sauzéon, and P.-Y. Oudeyer, “Gpt-3-driven pedagogical agents to train children's curious questionasking skills,” International Journal of Artificial Intelligence in Education, pp. 1–36, 2023.
    S. Moore, H. A. Nguyen, N. Bier, T. Domadia, and J. Stamper, “Assessing the quality of student-generated short answer questions using gpt-3,” in European conference on technology enhanced learning, pp. 243–257, Springer, 2022.
    J. Shen, Y. Yin, L. Li, L. Shang, X. Jiang, M. Zhang, and Q. Liu, “Generate & rank: A multi-task framework for math word problems,” arXiv preprint arXiv:2109.03034, 2021.
    Z. Wang, A. S. Lan, and R. G. Baraniuk, “Math word problem generation with mathematical consistency and problem context constraints,” arXiv preprint arXiv: 2109.04546, 2021.
    W. Yu, Y. Wen, F. Zheng, and N. Xiao, “Improving math word problems with pretrained knowledge and hierarchical reasoning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3384–3394, 2021.
    R. Abdelghani, Y.-H. Wang, X. Yuan, T. Wang, P. Lucas, H. Sauzéon, and P.-Y. Oudeyer, “Gpt-3-driven pedagogical agents to train children's curious questionasking skills,” International Journal of Artificial Intelligence in Education, pp. 1–36, 2023.
    J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24824–24837, 2022.
    X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” arXiv preprint arXiv:2203.11171, 2022.

    下載圖示
    QR CODE