簡易檢索 / 詳目顯示

研究生: 陳國坤
Guo Kun Chen
論文名稱: 固態物理中的非阿貝爾貝利相位
Non-Abelian Berry Phase in solid physics
指導教授: 張明哲
Chang, Ming-Che
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 39
中文關鍵詞: 非阿貝爾貝利相位
英文關鍵詞: Non-Abelian Berry Phase
論文種類: 學術論文
相關次數: 點閱:126下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從Michael Berry 在1983年發表了他對Geometric phase(也稱為Berry phase)的研究後,一些在實驗上無法解釋的現象,都因此得到了解答。而且我們會發現在物理研究中,很多領域都會使用到相關概念。我們在此探討主要分為兩大部份,阿貝爾(Abelian)和非阿貝爾(Non-Abelian)的結構,非阿貝爾(Non-Abelian)的結構涉及到簡併態的問題,所以在計算上並沒有像阿貝爾情形(非簡併)單純。因此,本論文主要是利用理論的推導並搭配數值計算探討非阿貝爾(Non-Abelian) Berry phase的結構及其特性。我們將計算方法應用於半導體的Luttinger model,搭配量子化條件後,可算出Berry phase效應對Landau level的修正。

    In 1983 Michael Berry propose the his study about Berry phase, some phenomena that can't be explained on the experiment, have been all answered. And we will find in physical research, many field will use relevant concepts. Here we will discuss two major parts, abelian and non-abelian structure, non-abelian structure involved the problem of degeneracy, so the calculation of non-abelian case is not simple as abelian case. In this paper, we use the theoretical derivation and match number value to discuss the sturctue and characteristic of the non-abelian Berry phase. We apply the computing technology to Luttinger model of the semiconductor, after matching the quantization condition, we can calculate the revision of Landau level of Berry phase effect.

    摘要 1 第1章導論 2 Section 1.1平行位移 2 Section 1.2 Adiabatic theorem 5 Section 1.3 Berry的研究 6 Section 1.4 與Berry Phase相關的實驗 11 第2章理論架構 13 Section 2.1 Non-Abelian case 13 Section 2.2 Spin 3/2的例子 15 Section 2.3 路徑的不可交換性 20 Section 2.4 Dirac monopole裡的Gauge Potential 21 Section 2.5 Non-Abelian gauge potential A_N與A_S 22 第3章Berry phase的計算 24 Section 3.1 Abelian case的探討 24 Section 3.2 Non-Abelian case的探討 26 §3.2.1計算方法 26 §3.2.2球面上的圓形軌跡 28 3.2.2.1球面上緯度固定的圓 28 3.2.2.2球面上的斜圓 30 §3.2.3球面上的8字形軌跡 31 §3.2.3 路徑中的不可交換性 33 Section 3.3 半導體能帶中的Luttinger Model 34 結論 38 Reference 39

    [1] Y.Aharono and J. Anandan, Phys. Rev. Lett. 58, 1593(1987)
    [2] Guggenheimer,W.Heinrich, Differential geometry(New York : McGraw-Hill, [1963])
    [3] Berry M V, Physics Today December 34(1990)
    [4] Berry M V, Science American December 46(1988)
    [5] Berry M V 1984 Proc. R. Soc. A 392 45
    [6] David J. Griffiths 2005 Introduction to Quantum Mechanics Second ed.
    [7] B.Simon, Phys. Phys. Rev. Lett. 51, 2167(1983)
    [8] J.J Sakurai 1994 Modern Quantum Mechanics Rev. ed.
    [9] Ming-Che Chang and Qian Niu,Condens.Matter 20193202 (2008)
    [10] H.Flanders Differential Forms with application to the physics science(New York : Academic Press, 1963)
    [11] D. Suter, K. T. Mueller, and A. Pines, Phys. Rev. Lett. 60, 1218 (1988)
    [12] T. Bitter & D. Dubbers, Phys. Rev. Lett. 59, 251(1987)
    [13] A. Zee, Phys. Rev. A 38, 1 - 6 (1988)
    [14] F.Wilczek and A. Zee, Phys. Rev. Lett. 52,2111(1984)
    [15] R. Tycko, Phys. Rev. Lett .58,2281(1984)
    [16] David J. Griffiths 1999, introduction To Electrodynamics, Third ed.
    [17] R. Shankar, Principles of Quantum Mechanics, Second ed.
    [18] Ming-Che Chang and Qian Niu, Phys. Rev. B 53, 7010 - 7023 (1996)
    [19] Shuichi Murakami,Naoto Nagaosa,Shou-Cheng Zhang,Science 301,1348(2003)
    [20] Ming-Che Chang and Qian Niu, Phys. Rev. Lett 75, 1348(1995)

    下載圖示
    QR CODE