簡易檢索 / 詳目顯示

研究生: 張家勳
Chang, Chia-Hsun
論文名稱: 二維SSH模型的拓樸性質與分類
The Topology and Classification of the 2D-SSH Model
指導教授: 高賢忠
Kao, Hsien-Chung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: SSH 模型Extended SSH 模型塊材與邊界對應性半金屬弱拓樸絕緣體時間反演對稱性奈米碳管
英文關鍵詞: SSH model, Extended SSH model, Bulk-edge correspondence, Semimetal, Weak topological insulator, Time reversal symmetry, Graphene nanotube
DOI URL: http://doi.org/10.6345/NTNU202001144
論文種類: 學術論文
相關次數: 點閱:284下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當塊材具有拓樸性質時,其對應的邊界上會存在邊界態,這就是所謂的「塊材與邊 界對應性」。此對應可由簡單的一維模型 − SSH 模型或 extended SSH 模型來做驗證。 我們嘗試將一維 SSH 長鏈交錯編織以推廣成二維系統,並稱之為二維 SSH 模型。

    我們發現透過調整二維 SSH 模型的參數,系統有可能為半金屬,弱拓樸絕緣體或 是一般的絕緣體。由於二維 SSH 模型具有時間反演對稱性,我們利用這個特性定義出 一個強拓樸量與兩個弱拓樸量,並用它們來為系統做分類。此外,我們也發現這個分 類方法等價於一個圖像化的分類方式。利用數值方法,我們驗證了二維 SSH 模型的塊 材與邊界對應性。最後,當選取特定的參數與邊界條件時,可以得出不同邊界型態的 奈米碳管的結果。

    When a system carries non-vanishing topological numbers in the bulk, there will be edge states on the boundary. This is the so-called bulk-edge correspondence. It can be verified explicitly by using the 1D SSH or extended SSH models. In this thesis, we consider the 2D-SSH model which may be constructed by interweaving the 1D SSH chains into a two dimensional system.

    For the 2D-SSH model, we find that it can be a semimetal, weak topological insulator or trivial insulator depending on the values of the parameters. Because the 2D-SSH model has time reversal symmetry, we may use this to define a strong topological number and two weak topological numbers. We can classify the system by using these topological numbers. Furthermore, we also show that this is equivalent to a graphical way to classify the system. We use numerical calculation to verify the bulk-edge correspondence for the 2D-SSH model. Finally, we can reproduce the results of various carbon nanotubes by choosing specific parameters and boundary conditions.

    致謝 i 摘要 ii Abstract iii Contents iv Chapter 1 1D Topological Chain 1 1.1 SSH Model 1 1.1.1 Bloch Hamiltonian 2 1.1.2 Winding number 3 1.1.3 Bulk-Edge Correspondence 4 1.2 Extended SSH Model 8 1.2.1 Three Kinds of Unit Cells 9 1.2.2 Edge States of The Extended SSH Model 12 Chapter 2 The 2D-SSH Model 16 2.1 Bolch Hamiltonian of the 2D-SSH Model 16 2.1.1 Figure of the 2D-SSH Model 19 2.1.2 Symmetries of the 2D-SSH Model 21 2.2 To Classify the 2D-SSH Model 22 2.2.1 The Strong Topological Number 22 2.2.2 Semimetal (v = 1) 22 2.2.3 Insulator (v = 0 ) 25 2.3 Phase Transition 28 Chapter 3 Edge States of the 2D-SSH Model 32 3.1 Reducing to the 1D SSH Model 32 3.2 Reducing to the 1D Extended SSH Model 36 3.3 Carbon Nanotube (CNT) 39 3.3.1 Zigzag-Zigzag Carbon Nanotube (Z-Z CNT) 39 3.3.2 Zigzag-Bearded Zigzag Carbon Nanotube (Z-BZ CNT) 42 3.3.3 Armchair-Armchair Carbon Nanotubes (A-A CNT) 45 3.3.4 Armchair-Bearded Armchair Carbon Nanotube (A-BA CNT) 48 Chapter 4 Conclusion and Discussion 51 Bibliography 53 Appendix A The Parametric Equation of Ellipse 55 Appendix B The Topological Numbers for Different Primitive Lattice Vectors 57

    [1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett., vol. 42, pp. 1698–1701, Jun 1979.

    [2] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators. Springer International Publishing, 2016.

    [3] H.-T. Chen, C.-H. Chang, and H. chung Kao, “The zak phase and winding number,” 2019.

    [4] B.-H. Chen and D.-W. Chiou, “A rigorous proof of bulk-boundary correspondence in the generalized su-schrieffer-heeger model,” 2017.

    [5] 陳漢庭, “札克相位與繞圈數”, 碩士論文, 國立臺灣大學物理學研究所, 2019.

    [6] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys., vol. 83, pp. 1057–1110, Oct 2011.

    [7] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys., vol. 88, p. 035005, Aug 2016.

    [8] 陳柏宏, “Two-dimensional extended su-schrieffer-heeger model”, 碩士論文, 國立臺灣師範大學物理學系, 2018.

    [9] A. Kitaev, “Periodic table for topological insulators and superconductors,” AIP Conference Proceedings, vol. 1134, no. 1, pp. 22–30, 2009.

    [10] L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev.Lett., vol. 98, p. 106803, Mar 2007.

    [11] B. A. BERNEVIG and T. L. Hughes, Topological Insulators and Topological Superconductors. Princeton University Press, 2013.

    [12] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B, vol. 83, p. 205101, May 2011.

    [13] N. Hamada, S.-i. Sawada, and A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules,” Phys. Rev. Lett., vol. 68, pp. 1579–1581, Mar 1992.

    [14] P. Delplace, D. Ullmo, and G. Montambaux, “Zak phase and the existence of edge states in graphene,” Phys. Rev. B, vol. 84, p. 195452, Nov 2011.

    [15] K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, and T. Enoki, “Topical review electronic states of graphene nanoribbons and analytical solutions,” Science and Technology of Advanced Materials - SCI TECHNOL ADV MATER, vol. 11, 10 2010.

    [16] L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New Journal of Physics, vol. 18, p. 103029, oct 2016.

    [17] K.-S. Lin and M.-Y. Chou, “Topological properties of gapped graphene nanoribbons with spatial symmetries,” 2018.

    [18] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, “Topological quantization of the spin hall effect in two-dimensional paramagnetic semiconductors,” Phys. Rev. B, vol. 74, p. 085308, Aug 2006.

    [19] T.-R. Chang, S.-Y. Xu, D. S. Sanchez, W.-F. Tsai, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M. Yu, S. A. Yang, T. Neupert, H.-T. Jeng, H. Lin, and
    M. Z. Hasan, “Type-ii symmetry-protected topological dirac semimetals,” Phys. Rev. Lett., vol. 119, p. 026404, Jul 2017.

    [20] J. He, X. Kong, W. Wang, and S.-P. Kou, “Type ii nodal line semimetal,” 2017.

    [21] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett., vol. 108, p. 140405, Apr 2012.

    [22] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, “Topological node-line semimetal in three-dimensional graphene networks,” Phys. Rev. B, vol. 92, p. 045108, Jul 2015.

    [23] J.-T. Wang, S. Nie, H. Weng, Y. Kawazoe, and C. Chen, “Topological nodal-net semimetal in a graphene network structure,” Phys. Rev. Lett., vol. 120, p. 026402, Jan 2018.

    [24] L. Fu, “Topological crystalline insulators,” Phys. Rev. Lett., vol. 106, p. 106802, Mar 2011.

    [25] C.-K. Chiu and A. P. Schnyder, “Classification of reflection-symmetry-protected topological semimetals and nodal superconductors,” Phys. Rev. B, vol. 90, p. 205136, Nov 2014.

    [26] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B, vol. 76, p. 045302, Jul 2007.

    下載圖示
    QR CODE