簡易檢索 / 詳目顯示

研究生: 楊惠芳
Huey-Fang Yang
論文名稱: 利用特徵點群聚萃取及輪廓特徵辨識公文文號
A Feature Point Clustering and Contour Based System for Official Document Serial Number Extraction and Recognition
指導教授: 李忠謀
Lee, Chung-Mou
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 52
中文關鍵詞: 特徵點群聚輪廓特徵字元萃取字元辨識
英文關鍵詞: Feature Point Clustering, Contour Based, Digit Extraction, Digit Recognition
論文種類: 學術論文
相關次數: 點閱:232下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在於為公文文件處理中的文件傾斜角度校正、資料欄位的擷取及數字辨識等問題,提出解決方法。在文件傾斜角度校正方面,利用公文文件大多是以文字組成的特性,以vertical run-length smoothing演算法處理影像後,再計算文字區塊的orientation,進而得到整張文件的傾斜角度。在資料欄位擷取方面,先以dilation及erosion二個morphological operations求得公文戳印的所在位置。之後,以特徵點群聚來分離戳印裡的表格格線與字元,再利用公文文號的字元特性及位置資訊,擷取出公文文號。而在數字辨識方面,以字元輪廓的傅利葉特徵搭配NNC分辨器,做為分辨數字的依據。以70張掃瞄解析器為300dpi的公文影像實驗之測試樣本,實驗結果顯示本研究之方法可以正確地擷取公文戳印及文號,且對於文號之辨識率可達98.7%;另外,對於NIST資料庫之手寫數字辨識率為90.39%。

    This thesis addresses the problem of the skew detection, data extraction and digit recognition in the document analysis systems. Vertical run-length smoothing algorithm was applied to determine the skewness of the document and to adjust the image accordingly. Morphological operations, dilation and erosion, were used to locate the serial number field. Feature point clustering technique was used to separate digits from non-digits. The final recognition was carried out by a NNC using Fourier features obtained from digit contour information. Experiment on 700 characters obtained from 70 document images showed a 98.7% recognition rate. Furthermore, when applied to 10000 characters from NIST special database 19, 90.39% recognition rate was achieved.

    目錄 圖目錄 ……………………………………………………………………iii 表目錄 ……………………………………………………………………iv 第一章 緒論……………………………………………………………1 1.1 研究動機………………………………………………………1 1.2 研究範圍與限制………………………………………………3 1.3 系統流程………………………………………………………4 1.4 論文結構………………………………………………………6 第二章 相關技術探討…………………………………………………7 2.1 傾斜角度校正…………………………………………………7 2.2 資料欄位的擷取………………………………………………9 2.3 光學字元辨識…………………………………………………10 2.4 結語……………………………………………………………13 第三章 文件傾斜角度的校正…………………………………………14 3.1 Vertical run-length smoothing 演算法…………………14 3.2 偵測文件傾斜角度……………………………………………16 3.3 實驗結果………………………………………………………18 第四章 資料欄位的擷取………………………………………………22 4.1 公文戳印的擷取………………………………………………22 4.1.1公文戳印的特性 ………………………………………22 4.1.2利用dilation及erosion萃取公文戳印………………23 4.2 公文文號的擷取………………………………………………26 4.2.1以clustering分離公文戳印裡的格線與字元 ………26 4.2.2以經驗法則擷取公文文號 ……………………………30 4.3 字元的切割……………………………………………………31 4.4 實驗結果………………………………………………………34 第五章 光學字元辨識…………………………………………………37 5.1字元輪廓的萃取………………………………………………………37 5.1.1前處理 --- 粗線化(thickening)……………………37 5.1.2字元輪廓的萃取 ………………………………………40 5.1.3參考點及起始點 ………………………………………41 5.2特徵萃取………………………………………………………………43 5.3手寫數字的辨識………………………………………………………46 5.3.1以輪廓數分類手寫數字 ………………………………46 5.3.2手寫數字的辨識 ………………………………………47 5.4實驗結果………………………………………………………………47 5.4.1公文文號的辨識 ………………………………………47 5.4.2手寫數字的辨識結果 …………………………………49 第六章 結論與未來展望………………………………………………51 6.1結論……………………………………………………………………51 6.2未來研究………………………………………………………………52 附錄A:Zhang-Suen細線化演算法………………………………………53 參考文獻 …………………………………………………………………54 圖目錄 圖1.1系統流程………………………………………………………………4 圖3.1 Vertical run-length smoothing演算法的運作方式。以垂直方向掃瞄,將連續白點長度小於3 (即灰色部份),轉為黑色 ……………15 圖3.2原始影像及經vertical run-length smoothing處理後之影像。(a) 二元化後之原始影像 (b) 經vertical run-length smoothing處理後之影像……………………………………………………………………………16 圖3.3物件的orientation所指角度示意圖………………………………17 圖3.4區域高度的計算方式……………………………………………………………………………18 圖4.1公文戳印的長寬比例及公文文號所在位置 ………………………23 圖4.2原始影像經dilaion、erosion及union處理之影像。(a) 原始影像 (b) 除去垂直線段只餘水平線段之影像 (c) 除去水平線段只餘垂直線段之影像 (d) 將(b)及(c) union後的結果 ………………………………24 圖4.3原始文件影像及利用dilaion及erosion所擷取的公文戳印。(a) 原始文件影像 (b) 擷取出的公文戳印……………………………………………………………………………25 圖4.4細線化後的公文戳印 ………………………………………………27 圖4.5萃取特徵點後的影像 ………………………………………………28 圖4.6圖文分離後的字元 …………………………………………………30 圖4.7以經驗法則擷取出的公文文號 ……………………………………30 圖4.8兩個相連0的pixel projection、profile projection及區分函數。(a) 兩個相連0的pixel projection (b) 兩個相連0的profile projection (c) 只取FPF(k)值區分函數 (d) 只取PXP(k)值的區分函數 (e) 以(c)及(d)決定出來的區分函數F(k)………………………………33 圖4.9部分公文影像及擷取出來之公文戳印及公文文號 ………………35 圖4.10斷裂的字元9,導致無法順利擷取出公文文號 …………………36 圖4.11在圖4.10中戳印裡的字元9斷裂的情形 …………………………36 圖5.1將字元黑點數增多的順序 …………………………………………39 圖5.2粗線化前後的字元比較。(a) 粗線化前的字元 (b) 粗線化後的字元……………………………………………………………………………39 圖5.3輪廓上多餘的點 ……………………………………………………40 圖5.4去除字元上多餘點的遮罩。x表示don’t care …………………41 圖5.5去除多餘點後的字元輪廓。(a) 含有多餘點的字元輪廓 (b) 去除多餘點的字元輪廓……………………………………………………………41 圖5.6萃取字元輪廓的方向。(a) 起始點位於參考點的左上方 (b) 起始點位於參考點的右上方 (c) 起始點位於參考點的左下方 (d) 起始點位於參考點的右下方………………………………………………………………42 圖5.7數字8萃取出的3個輪廓 ……………………………………………43 圖5.8數字6、數字7及數字0的傅利葉特徵係數值。棋座標代楆u之值,範圍由0至31;縱座標代表傅利葉特徵 ……………………………………45 圖5.9特殊輪廓數的手寫數字 ……………………………………………46 圖5.10 NIST資料庫部分數字影像 ………………………………………49 表目錄 表3.1所選擇各區域之角度及以中間值、平均值為文件傾斜角度與文件實際傾斜角度之比較…………………………………………………………20 表3.2不同區域所求得之傾斜角度及與實驗傾斜角度之差值 …………21 表5.1手寫數字的分類 ……………………………………………………46 表5.2部份辨識錯誤的影像 ………………………………………………48 表5.3辨識結果 ……………………………………………………………50

    [1] 張貴雲, 表單手寫欄位資料之萃取, 國立台灣師範大學資訊教育研究所碩士論文, 1998.
    [2] 林育慈, 離線手寫印刷體英數字之辨識, 國立台灣師範大學資訊教育研究所碩士論文, 1998.
    [3] Alessandro L. Koerich and Luan Ling Lee, “A system for automatic extraction of the user-entered data from bankchecks,” Proc. Int’l Symposium on Computer Graphics, Image Processing and Vision, SIBGRAPI’98, pp. 270-277, 1998.
    [4] Alireza Khotanzad and Yaw Hau Hong, “Invariant image recognition by Zernike moment,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 489-497, May 1990.
    [5] Arnaud Ribert, Yves Lecourtier and Abdel Ennaji, “Designing efficient distributed neural classifiers: application to handwritten digit recognition,” Proc. Fifth Int’l Conf. Document Analysis and Recognition, ICDAR '99, pp. 265-268, 1999.
    [6] Avanindra and Subhasis Chaudhuri, “Robust detection of skew in document images,” IEEE Trans. on Image Processing, vol. 6, no. 2, February 1997.
    [7] Cha-Sup Jeong and Dong-Seok Jeong, “Hand-written digit recognition using Fourier descriptors and contour information,” Proc. of the IEEE Region 10 Conf. vol. 2, pp. 1283-1286, 1999.
    [8] Dahai Cheng and Hong Yan, “Recognition of handwritten digits based on contour information,” Pattern Recognition, vol. 31, no. 3, pp. 235-255, 1998.
    [9] Daniel S. Le, George R. Thoma and Harry Wechsler, “Automated page orientation and skew angle detection for binary document images,” Pattern Recognition, vol. 27, no. 10, pp. 1325-1344, 1994.
    [10] F. Y. Shih, S.-S. Chen, “Adaptive Document Block Segmentation and Classification,” IEEE Trans. on Systems, Man, and Cybernetics - Part B, vol. 26, no. 5, pp. 797-802, October 1996.
    [11] H. Yan, “Skew correction of document image using interline cross-correlation,” CVGIP: Graphical Models and Image Processing, vol. 55, pp. 538-534, 1993.
    [12] James R. Parker, Algorithms for image processing and computer vision, 1996.
    [13] Jing Wu and Hong Yu, “Combined SOM and LVQ based classifiers for handwritten digit recognition,” Proc. IEEE Int’l Conf. Neural Networks, vol. 6, pp. 3074-3077, 1995.
    [14] Jinhai Cai and Zhi-Qiang Liu, “Integration of structural and statistical information for unconstrained handwritten numeral recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, no. 3, March 1999.
    [15] Kuo-Chin Fan, Jeng-Ming Lu, Liang-Sheng Wang and Hong-Yuan Liao, “Extraction of characters from form documents by feature point clustering,” Pattern Recognition Letters, vol. 16, pp. 963-970, 1995.
    [16] Lawrence O’Gorman, “The document spectrum for page layout analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, November 1993.
    [17] L. A. Torres-Méndez, J. C. Ruiz-Suárez, Luis E. Sucar and G. Gómez, “Translation, Rotation, and Scale-Invariant Object Recognition,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 30, no. 1, February 2000.
    [18] Minoru Fukumi, Sigeru Omatu and Yoshikazu Nishikawa, “Rotation-invariant neural pattern recognition system estimating a rotation angle,” IEEE Trans. on Neural Network, vol. 8, no. 3, pp. 568-581, May 1997.
    [19] M. W. Chen and M. H. Ng, “Recognition of unconstrained handwritten numerals using crossing features,” Fifth Int’l Symposium on Signal Processing and its Application, ISSPA’99, Brisbane, Australia, vol. 1, pp. 22-25, August 1999.
    [20] N. W. Stranthy and C. Y. Suen, “A new system for reading handwritten zip codes,” Proc. Third Int’l Conf. Document Analysis and Recognition, (ICDAR’95), vol. 1, pp. 74-77, 1995.
    [21] R. Jain, R. Kasturi and B. B. Schunck, Machine Vision, 1995.
    [22] Robert R. Bailey and Mandyam Srinath, “Orthogonal moment features for use with parametric and non-parametric classifier,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 4, pp. 389-399, April 1996.
    [23] S. Liang, M. Ahmadi, M. Shridhard, “Segmentation of touching characters in printed document,” Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 569-572, 1993.
    [24] S. Madhvanath, G. Kim and V. Govindaraju, “Chaincode contour processing for handwritten word recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp. 928-932, September 1999.
    [25] S. N. Srihari and F. J. Keubert, “Integration of handwritten address interpretation technology into the United States postal service remote computer reader system,” Proc. Fourth Int’l Conf. Document Analysis and Recognition, Ulm, Germany, vol. 2, pp. 892-896, August 1997.
    [26] Salim Djeziri, Fathallah Noubound and Rejean Plamondon, “Extraction of signatures from check background on a filiformity criterion,” IEEE Transactions on Image Processing, vol. 7, no. 10, pp. 1425-1438, October 1998.
    [27] Seong-Whan Lee and Hee-Heon Song, “A new recurrent neural-network architecture for visual pattern recognitioin,” IEEE Trans. on Neural Network, vol. 8, no. 2, pp. 331-340, March 1997.
    [28] Sung-Bae Cho, “Neural-network classifiers for recognizing totally unconstrained handwritten numerals,” IEEE Trans. on Neural Network, vol. 8, no. 1, pp. 43-53, 1997.
    [29] T. Akiyama and N. Hagita, “Automatic entry system for printed documents,” Pattern Recognition, vol. 23, pp. 1141-1154, 1990.
    [30] U. Pal, B. B. Chaudhuri, “An improved document skew angle estimation technique,” Pattern Recognition Letters, pp. 899-904, 1996.
    [31] Xingyuan Li, Jiarong Hong, Zhaohui Zhang and Bin Chen, “A statistical form reading system,” 1993 IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, TENCON '93, vol. 2, pp. 1062-1065, 1993.
    [32] Y. Y. Chung and M. T. Wong, “High accuracy handwritten character recognition system using contour sequence moments,” Proc. Fourth Int’l Conf. Signal Processing, vol. 2, pp. 1249-1252, 1998.

    QR CODE