簡易檢索 / 詳目顯示

研究生: 蔡世雍
Shih-Yung Tsai
論文名稱: 光分歧器應用於光分時多工系統之研究與應用
Study and fabrication of optical Splitter for Applying to OTDM system
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 光分歧器光分時多工溶膠法
英文關鍵詞: optical splitter, OTDM, sol-gel method
論文種類: 學術論文
相關次數: 點閱:219下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出應用多模干涉型積體光波導光分歧器,分析光分時多工系統之效能,並嘗試以溶膠凝膠法製作出1x(2N+1)光分歧器。多模干涉型波導光分歧器是基於自成像現象設計而成。另外我們利用設計出來的光編碼器應用到光分時多工系統中,利用延遲時間的調整來得到合併的高速脈衝。最後,我們利用溶膠凝膠法在石英基板上來製作玻璃光波導,以便達到易於積體光學元件之製作。

    In this thesis, we apply multimode interference integrated optical power splitter to the optical time division multiplexer system. And we try to fabricate the 1x(2N+1) optical splitter by sol-gel method. The multimode interference optical splitter is designed according to self-image phenomenon. And we apply delay line technique to OTDM system to obtain the generation of combining pulse train. Finally we fabricate glass waveguide on quartz by using sol-gel method.

    摘要………………………………………………………i ABSTRACT………………………………………………………ii 誌 謝………………………………………………………iii Contents………………………………………………………iv List of Figures………………………………………………………vi List of Tables………………………………………………………viii Chapter 1 Introduction……………………………………………………1 Chapter 2 Design and Analysis of 1x(2N+1) MMI Power Splitter Based on SOQ Waveguide ………………………………………5 2-1 Introduction of the Technique of Sol-Gel Waveguide………………………………………………………6 2-1-1 Mathematic Formulation of Beam Propagation Method ………………………………………………………7 2-1-2 Erbium doped waveguide amplifier based sol gel method ………………………………………………………11 2-2 Introduction of the Technique of MMI Structure ………………………………………………………14 2-2-1 Mathematic Formulation of MMI Structure ………………………………………………………15 2-3 Simulation Results of 1x(2N+1) MMI Power Splitters Based on Sol-Gel Er3+ Doped Waveguide ………………………………………………………17 2-3-1 1 x 3 MMI Power Splitter based on Sol-Gel glass waveguide ………………………………………………………17 2-3-2 1 x 5 MMI Power Splitter based on Sol-Gel glass waveguide ………………………………………………………19 2-3-3 1 x 7 MMI Optical Splitter based on Sol-Gel glass waveguide ………………………………………………………21 2-3-4 1 x 9 MMI Optical Splitter based on Sol-Gel glass waveguide ………………………………………………………22 2-4 Summary ………………………………………………………24 Chapter 3 An Optical Multiplexer for Pulse Train Generation ………………………………………………………38 3-1 Introduction of the optical time division multiplexing ………………………………………………………39 3-2 Theory of the generation of pulse train based on optical time division multiplexer ………………………………………………………40 3-2-1 Basic principle of pulse train generation based on lightwave circuit ………………………………………………………41 3-3 Design and analysis of the generation of pulse train based on optical time division multiplexing 44 3-3-1 Generation of pulse train based on 1x3 MMI power splitter ………………………………………………………44 3-3-2 Generation of pulse train based on 1x5 MMI power splitter ………………………………………………………45 3-3-3 Generation of pulse train based on 1x7 MMI power splitter ………………………………………………………47 3-3-4 Generation of pulse train based on 1x9 MMI power splitter ………………………………………………………48 3-4 Summary ………………………………………………………50 Chapter 4 Fabrication of Er3+ Doped Waveguide Based on Sol Gel Process ………………………………………………………59 4-1 Introduction of Sol-Gel technology for integrated optics ………………………………………………………60 4-2 Theory of Er3+ doped waveguide based on sol-gel method ………………………………………………………63 4-3 Fabrication processes of Er3+ doped Sol-Gel glass ………………………………………………………64 4-3-1 Chemistry reaction and Processes of Erbium doped Sol Gel Tectosilicate ………………………………………………………65 4-3-2 Fabrication of sol gel Er3+ doped thin film on quartz substrate ………………………………………………………69 4-3-3 Experiment result of Channel waveguide based on Er3+ doped sol-gel glass ………………………………………………………74 4-3-4 Experiment result of 1x(2N+1) optical power splitters based on Er3+ doped sol-gel glass ………………………………………………………75 4-4 Summary ………………………………………………………77 Chapter 5 Conclusion ………………………………………………………84 Reference ………………………………………………………86 Publication Lists ………………………………………………………95 List of Figures Fig. 2-1 Structure of MMI devices ………………………26 Fig. 2-2 Multimode waveguide based on self-imaging ………………………………………………………26 Fig. 2-3 Structure of 1x(2N+1) MMI optical splitter based on Sol gel glass rib waveguide ………………………………………………………27 Fig. 2-4 Length variation of MMI waveguide of a 1x3 MMI splitter with WMMI =18μm at input wavelength 1.55μm ………………………………………………………27 Fig. 2-5 Width variation of MMI waveguide of a 1x3 MMI splitter with LMMI = 492.6μm at input wavelength 1.55μm ………………………………………………………28 Fig. 2-6 Response of input wavelength of a 1x3 MMI splitter with LMMI = 492.3μm and WMMI = 18μm ………………………………………………………28 Fig. 2-7 Etched depth variation of rib waveguide of a 1x3 MMI splitter with LMMI=492.6μm and WMMI=18μm at input wavelength 1.55μm ………………………………………………………29 Fig. 2-8 Length variation of MMI waveguide of a 1x5 MMI splitter with WMMI = 30μm at input wavelength 1.55μm ………………………………………………………29 Fig. 2-9 Width variation of MMI waveguide of a 1x5 MMI splitter with LMMI = 1203μm at input wavelength 1.55μm ………………………………………………………30 Fig. 2-10 Response of input wavelength of a 1x5 MMI splitter with LMMI = 1203μm and WMMI = 30μm ………………………………………………………30 Fig. 2-11 Etched depth variation of rib waveguide of a 1x5 MMI splitter with LMMI=1203μm and WMMI=30μm at input wavelength 1.55μm ………………………………………………………31 Fig. 2-12 Length variation of MMI waveguide of a 1x7 MMI splitter with WMMI = 42μm at input wavelength 1.55μm ………………………………………………………31 Fig. 2-13 Width variation of MMI waveguide of a 1x7 MMI splitter with LMMI = 2763μm at input wavelength 1.55μm ………………………………………………………32 Fig. 2-14 Response of input wavelength of a 1x7 MMI splitter with LMMI = 4276.3μm and WMMI = 42μm ………………………………………………………32 Fig. 2-15 Etched depth variation of rib waveguide of a 1x7 MMI splitter with LMMI=4276.3μm and WMMI=42μm at input wavelength 1.55μm ………………………………………………………33 Fig. 2-16 Length variation of MMI waveguide of a 1x9 MMI splitter with WMMI = 54μm at input wavelength 1.55μm ………………………………………………………33 Fig. 2-17 Width variation of MMI waveguide of a 1x9 MMI splitter with WMMI = 54μm at input wavelength 1.55μm ………………………………………………………34 Fig. 2-18 Response of input wavelength of a 1x9 MMI splitter with LMMI = 6000μm and WMMI = 54μm ………………………………………………………34 Fig. 2-19 Etched depth variation of rib waveguide of a 1x9 MMI splitter with LMMI=6000μm and WMMI=54μm at input wavelength 1.55μm ………………………………………………………35 Fig. 2-20 Relation of LMMI of and number of output ports for 1x(2N+1) power splitter based on sol gel glass ………………………………………………………35 Fig. 2-21 Relation of WMMI of and number of output ports for 1x(2N+1) power splitter based on sol gel glass ………………………………………………………36 Fig. 2-22 Relation of Wavelength of and number of output ports for 1x(2N+1) power splitter based on sol gel glass ………………………………………………………36 Fig. 2-23 Relation of depth of and number of output ports for 1x(2N+1) power splitter based on sol gel glass ………………………………………………………37 Fig. 3-1 Transmitter and of the OTDM system ………………………………………………………51 Fig. 3-2 Timing scheme for multiplexing in an n-channel OTDM ………………………………………………………52 Fig. 3-3 BPM simulation of the 1x3 MMI splitter operation ………………………………………………………52 Fig. 3-4 Simulation of pulse train trace for using 1x3 power splitter ………………………………………………………53 Fig. 3-5 BER versus received power for applying 1x3 optical splitter ………………………………………………………53 Fig. 3-6 BPM simulation of the 1x5 MMI splitter operation ………………………………………………………54 Fig. 3-7 Simulation of pulse train trace for using 1x5 power splitter ………………………………………………………54 Fig. 3-8 BER versus received power for applying 1x5 optical splitter ………………………………………………………55 Fig. 3-9 BPM simulation of the 1x7 MMI splitter operation ………………………………………………………55 Fig. 3-10 Simulation of pulse train trace for using 1x7 power splitter ………………………………………………………56 Fig. 3-11 BER versus received power for applying 1x7 optical splitter ………………………………………………………56 Fig. 3-12 BPM simulation of the 1x9 MMI splitter operation ………………………………………………………57 Fig. 3-13 Simulation of pulse train trace for using 1x9 power splitter ………………………………………………………57 Fig. 3-14 BER versus received power for applying 1x9 optical splitter ………………………………………………………58 Fig. 4-1 Three-level modal for Er3+ doped waveguide amplifier ………………………………………………………78 Fig. 4-2 Processes of Er3+ doped Sol-Gel Glass ………………………………………………………78 Fig. 4-3 Mainly Sol-Gel chemical reaction ………………………………………………………79 Fig. 4-4 the process of drying sol gel thin film ………………………………………………………79 Fig. 4-5 The relation of erbium concentration and refractive index ………………………………………………………80 Fig. 4-6 The infrared absorption spectrum of sol gel thin film ………………………………………………………80 Fig. 4-8 The picture of channel waveguide ………………………………………………………82 Fig. 4-9 The picture of 1x3 optical power splitter ………………………………………………………82 Fig. 4-10 The picture of 1x5 optical power splitter ………………………………………………………82 Fig. 4-11 The picture of 1x7 optical power splitter ………………………………………………………82 Fig. 4-12 Relation of concentration of normalize enhancement signal ………………………………………………………83 Fig. 4-13 The image mode pattern is captured to Pc by IR Camera and image card with source wavelength = 1550nm ………………………………………………………83 List of Tables Table 2-1 Design parameters of 1x(2N+1) power splitters based on sol gel glass ………………………………………………………37 Table 3-1 The relation of splitters output posts forΔτ, ΔL, and Output pulse frequency ………………………………………………………58

    [1] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and D. Weller, “Stable ultrahigh-density magneto-optical recordings using introduced linear defects,” Nature, vol. 410, pp. 444-446, 2001.
    [2] K. Manoh, H. Yoshida, T. Kobayashi, M. Takase, K. Yamauchi, S. Fujiwara, T. Ohno, N. Nishi, M. Ozawa, M. Ikeda, T. Tojyo, and T. Taniguchi, “Small integrated optical head device using a blue-violet laser diode for Blue-ray Disc system,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 386-388, 2002.
    [3] N. Kobayashi, and C. Egami, “High-resolution optical storage by use of minute spheres,” Opt. Lett., vol. 30, no. 3, pp. 299-301, 2005.
    [4] I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okamoto, K. Magari, Y. Suzuki and T. Morioka. “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” ELECTRONICS LE77ERS, 3rd January 2002 Vol. 38 No.1.
    [5] Ken-ichi Suzuki, Katsumi Iwatsuki, Shigendo Nishi, Masatoshi Saruwatari, Senior and Tsutomu Kitoh,” 160 Gb/s Sub-Picosecond Transform-Limited Pulse Signal Generation Utilizing Adiabatic Soliton Compression and Optical Time-Division Multiplexing,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 6, NO. 3, MARCH 1994.
    [6] T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh,K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, and M. M. Fejer,” 160-Gb/s OTDM Transmission Using Integrated All-Optical MUX/DEMUX With All-Channel Modulation and Demultiplexing,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 2, FEBRUARY 2004.
    [7] Shin Arahira and Yoh Ogawa,” 160-Gb/s OTDM Signal Source With 3R Function Utilizing Ultrafast Mode-Locked Laser Diodes and Modified NOLM,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 5, MAY 2005.
    [8] S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol., vol. 4, no. 7, pp. 913-918, 1986.
    [9] H. Ukita, Y. Sugiyama, H. Nakada, and Y. Katagiri, “Read/write performance and reliability of a flying optical head using a monolithically integrated LD-PD,” Appl. Opt., vol. 30, no. 26, pp. 3770-3776, 1991.
    [10] T. Shiono, and H. Ogawa, “Planar-optic-disk pickup with diffractive micro-optics,” Appl. Opt., vol. 33, no. 31, pp. 7350-7355, 1994.
    [11] L. Y. Lin, S. J. Shen, S.S. Lee, M.C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Opt. Lett., 21, pp. 155-157, 1996.
    [12] J.J. Ebelmen, Ann. 57, 533 (1846).
    [13] Graham, T. J. Chem. SOC, 618-626, 1864.
    [14] R. Ulrich and H.P. Weber, Appl. Opt. 11, 428–434, 1972.
    [15] Shiquan Tao, Christopher B. Winstead, Rajeev Jindal, and Jagdish P. Singh,” Optical-Fiber Sensor Using Tailored Porous Sol-Gel Fiber Core,” IEEE SENSORS JOURNAL, VOL. 4, NO. 3, JUNE 2004.
    [16] Zhang Xiao; Lu Haijing; Soutar, A.; Zeng Xianting,” Planar optical waveguides fabricated using organic-inorganic hybrid sol-gel materials for optical interconnection and waveguide devices,” IEEE Electronics Packaging Technology Conference, pp.744-747.
    [17] Weiss, A.M.; Yariv, E.; Reisfeld, R,” Sol-gel based dye laser stability under pulsed laser excitation,” IEEE LASER AND ELECTRO-OPTICS SOCIETY, Vol1, pp. 127-128, Nov 2001.
    [18] Grant, S.A.; Glass, R.S,” Sol-Gel-Based Biosensor for Use in Stroke Treatment,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 46, NO. 10, OCTOBER 1999.
    [19] L. Vincetti, A. Cucinotta, S. Selleri and M. Zoboli, “Three-dimensional finite-element beam propagation method: assessments and developments,” J. Opt. Soc. Am. A, vol. 17, no. 6, pp. 1124-1131, 2000.
    [20] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, no. 24, pp. 3990-3998, 1978.
    [21] P. Danielsen, “Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” J. Quantum Electron., vol. 20, no. 9, pp. 1093-1097, 1984.
    [22] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” J. Quantum Electron., vol. 26, no. 8, pp. 1335-1339, 1990.
    [23] P. Yeh, Optical waves in layered media, chapter 1, Canada, John Wiley & Sons, 1988.
    [24] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical Techniques for Modeling Guided-Wave Photonic Devices,” J. Selected Topics in Quantum Electron., vol. 6, no. 1, pp. 150-162, 2000.
    [25] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” Opt. Lett., vol. 16, pp. 624-626, 1991.
    [26] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” J. Quantum Electron., vol. 29, pp. 2639, 1993.
    [27] D. Barbier, P. Bruno, C. Cassagnettes, M. Trouillon, R. L. Hyde, A. Kevorkian, and J. M. P. Deleveauxl, “Net gain of 27dB with 8.6 cm-long Er/Yb doped glass planar amplifier,” in OFC Tech. Dig., 1998, pp. 45-48
    [28] J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier,M. Rattay, F. Saint André, and A. Kevorjian,“Integrated optics erbiumytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett., vol. 9, pp. 247–249, Feb. 1997.
    [29] P. Camy, J. E. Román, F.W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S.Wilkinson, and C. Lerminiaux,“Ion exchanged planar lossless splitter at 1.5 m, ”Electron. Lett., vol. 32, pp. 321–323, 1996.
    [30] K.Shuto, K.Hattori, T.Kitagawa, Y.Ohmori, and M.Horiguchi, "Erbium doped phosphosilicate glass waveguide amplifier fabricated by PECVD," Electron Lett, vol. 29, no. 2, pp. 139-141, (1993).
    [31] KHattori, T.Kitagawa, M.Oguma, M.Wada, J.Temmyo, and M.Horiguchi, "Erbium doped silica based planar waveguide amplifier pumped by 0.98 p.m laser diodes," Electron Lett, vol. 29, no. 4, pp. 357-359, (1993).
    [32] F. Di Pasquale and M. Federighi, ” Improved Gain Characteristics in High-Concentration Er 3+/Yb3+C odoped - Glass Waveguide Amplifiers,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 30, NO. 9, SEPTEMBER 1994.
    [33] Athanasios Laliotis, Eric M. Yeatman, Munir M. Ahmad, and Weibin Huang,” Molecular Homogeneity in Erbium-Doped Sol-Gel Waveguide Amplifiers,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 6, JUNE 2004.
    [34] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [35] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, pp. 416-418, 1973.
    [36] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguide,” Appl. Phys. Lett., vol. 27, pp. 337-339, 1975.
    [37] R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer., vol. 68, pp. 583-592, 1978.
    [38] E. C. M. Pennings, R. van Roijen, B. H. Verbeek, R. J. Deri, and L. B. Soldano, “Ultracompact multimode interference waveguide devices,” Proceeding of IEEE LEOS '93 Conference, pp. 193-194, 1993.
    [39] H. Wei, J. Yu, X. Zhang, and Z. Liu, “Compact 3-dB tapered multimode interference coupler in silicon-on-insulator,” Opt. Lett., vol. 26, no. 12, pp. 378-380, 2001.
    [40] M. L. Maˇsanovic´, E. J. Skogen, J. S. Barton, J. M. Sullivan, D. J. Blumenthal, and L. A. Coldren, “Multimode interference-based two-stage 1 /spl times/ 2 light splitter for compact photonic integrated circuits,” Photon. Technol. Lett., vol. 15, no. 5, pp. 706-708, 2003.
    [41] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios,” J. Lightwave Technol., vol. 19, no. 5, pp. 700-707, 2001.
    [42] J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” Photon. Technol. Lett., vol. 15, no. 1, pp. 72-74, 2003.
    [43] M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” Photon. Technol. Lett., vol. 15, no. 8, pp. 1035-1037, 2003.
    [44] S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode Interference Photonic Switches (MIPS),” J. Lightwave Technol., vol. 20, no. 4, pp. 675-681, 2002.
    [45] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. W¨orhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol., vol. 17, no. 12, pp. 2542-2550, 1999.
    [46] L. Caruso and I. Montrosset, “Analysis of a Racetrack Microring Resonator With MMI Coupler,” J. Lightwave Technol., vol. 21, no. 1, pp. 206-210, 2003.
    [47] S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1 x 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Communications, vol. 232, pp. 371-379, 2004.
    [48] T. M. Benson, P. Sewell, A. Vukovic, and D. Z. Djurdjevic, “Advances in the finite difference beam propagation method,” Opt. Networks, pp. 36-41, 2001.
    [49] M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, Optimizing imbalance and loss in 2 /spl times/ 2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol., vol. 21, no. 10, pp. 2305-1313, 2003.
    [50] C. J.Brinker, G Scherer,“ Sol-Gel-Science,“ and Chemistry of Sol-Gel Processing, Academic Press: London, 1990.
    [51] T. S. Kinsel, and R. T. Denton, “ Terminals for a high-speed optical pulse code modulation communication system: II. Optical multiplexing and demultiplexing, ” Proc.IEEE., vol. 56, pp. 146-154, 1968.
    [52] S. J. Buchsbaum and R. Kompfner, “Time-division multiplex optical transmission system, ”U.S. Patent 3 506 834, 1970.
    [53] T.S .Kinsel, R.T. Denton, “Terminals for high speed optical pulse code modulation communication system: II. Optical multiplexing and demultiplexing,” Proceedings of the IEEE, vol. 56, no. 2, 1968.
    [54] R.S.Tucker, G. Eisenstein, S.K. Korotky, “Optical time-division multiplexing for very high bit-ratetransmission”, Lightwave Technology Journal ,Vol. 6, Page 1737-1749, Nov 1988.
    [55] S. J. Buchsbaum and R. Kompfner, “Time-division multiplex optical transmission system ,” U.S. Patent 3 506 834 1970.
    [56] T. S. Kinsel and F. S. Chen, “Experimental of an optical time division demultiplexer for twenty-four channels,” Appl. Opt., vol.11, pp. 1411-1418, 1972.
    [57] M. Thewalt, “Time domain multiplexing of signals on an optical fiber using mode-locked laser pulses, ”IBM Tech. Disclosure Bull.,vol. 24, pp.2473-2475, 1981.
    [58] A. Alping, T. Anderson, R. Tell, and S. T. Eng, “20-Gbit/s optical time multiplexing with TJS GaAlAs lasers,” Electron. Lett., vol. 18, pp. 422-424, 1982.
    [59] K. Iwatsuki, K. Suzuki, S Nishi, and M. Saruwatari, “40 Gbit/s optical soliton transmission over 65km,” Electron. Lett., vol. 28, pp. 1821-1822, 1992.
    [60] M. Artglia, E Ciaramella, and P. Gallina, “Demonstration of CW soliton trans at 10, 40 and 160 GHz by means of induced modulation stability, ”Opt. Lett., vol. 12 pp. 305-308, 1997.
    [61] N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” Lightwave Technology, Journal, vol. 12. pp. 1440-1447, 1994.
    [62] L. Nguyen, T. Dennis, B. Aazhang and J. F. Young,“Optical Spectrum amplitude CDMA communication,” vol. 15 pp. 1647-1653, 1997.
    [63] E. Suhir,“Fiber Optics structural mechanics,” pp 937-948, 1995.
    [64] M. G. Ioannides,“Design and implementation of PLC-based monitoring control system for induction motor,” vol.19 pp.469-476, 2003.
    [65] C. J.Brinker, G Scherer,“ Sol-Gel-Science,“ and Chemistry of Sol-Gel Processing, Academic Press: London, 1990.
    [66] Geffcken w, berger E,” Dtsch rei Chspatent. Jenaer Galswerk Sohool and Gen.” Jena. Gdr, 736:411 1939.
    [67] Opt. Eng., vol. 37, no. 4, Apr. 1998.
    [68] J. C. Palais, “Fiber Optic Communications,” 4th ed., Prentice Hall, New York, 1998
    [69] A. Selvarajan, T. Srinivas,”Optical amplification and photosensitivity in sol-gel based waveguide. Vol. 37, pp. 1117-1126, 2001.
    [70] J. C. Palais,” Fiber Optics Communication, 4th ed., Prentice Hall, New York, 1998.

    QR CODE