研究生: |
謝昀朔 Yun-Shuo Hsieh |
---|---|
論文名稱: |
熱與光對化學汽相成長奈米碳管場發射的效應及其發光元件應用研究 Study of thermal and optical effect on electron field emission properties of carbon nanotubes for emitter applications. |
指導教授: |
鄭秀鳳
Cheng, Hsiu-Fung |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 奈米碳管 、電子場發射 、化學汽相沉積法 |
英文關鍵詞: | carbon nanotubes, electron field emission, CVD |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微波電漿輔助化學汽相沉積法成長奈米碳管於鐵針針尖,採用製程參數及所得結果包括(1)改變不同氣體總壓成長奈米碳管由低壓至高壓碳管直徑有漸大的趨勢,(2)有機鐵催化劑對成長之奈米碳管均勻度有顯著的影響,不同氣體成長之奈米碳管也有不同的型態,及(3)以石墨粉及鑽石粉為碳源在適當的壓力及溫度條件下可以成長奈米碳管。
在微波電漿輔助化學汽相沉積法成長奈米碳管之臨場電漿發射光譜研究中,改變不同氣體總壓擷取電漿可見光發射光譜,分析不同壓力下成長奈米碳管的電漿中之物種及計算電漿溫度,藉以獲得成長奈米碳管最佳化的參數條件,進一步以固─液─固成長模型解釋了微波輔助化學汽相沈積法合成奈米碳管於鐵針針尖的成長機制。
在熱與光對奈米碳管之電子場發射特性影響實驗中,加熱與照射雷射光對奈米碳管場發射特性都會產生明顯且不可回復之影響。另外,初步嘗試利用掃描穿隧電子顯微鏡(STM)觀察碳管,可得解析度不錯之表面微結構,最後,研製奈米碳管引發綠光之元件雛形,顯示本研究所合成奈米碳管具有應用於場發射元件之潛力。
In this thesis, the microwave plasma enhanced chemical vapor deposition method was used to synthesize carbon nanotubes on the tip of iron needle. The morphology of the carbon nanotubes changed with the gas species and the diameters of the carbon nanotubes increased with the gas pressure in the chamber. The organic iron catalysts precoated on the tip pronouncedly improved the carbon nanotubes grow uniformity. Moreover, carbon nanotubes were synthesized by using graphite powder and diamond powder as the carbon sources.
Optical emission spectra of the microwave enhanced plasma in the synthesizing process were analyzed to optimize the growing process and to investigate the growth mechanism. From the gas species and the corresponding plasma temperature calculated from the spectra, solid-liquid-solid model was proposed to explain the growing mechanism for the carbon nanotubes on the tip of iron needle. The topography image of carbon nanotubes is characterized by scanning tunneling microscopy.
The field emission properties are markedly influenced by heating and laser irradiation. Finally, a prototype electron field emitter was demonstrated, which shows that carbon nanotubes possess good potential for the application on the field emission devices.
1. T. W. Ebbesen, Carbon nanotubes: preparation and properties, CRC Press, New York, 36—59 (1997).
2. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R.E.Smalley, “C60 : Buckmiusterfullerene”, Nature 318, 162 (1985).
3. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56—58 (1991).
4. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363, 603—605 (1993).
5. Y. Ando and S. Iijima, “Preparation of carbon nanotubes by arc-discharge evaporation”, Jpn. J. Appl. Phys. 32, L107—L109 (1993).
6. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London, 35—58 (1998).
7. M. S. Dresselhous, G. Dresselhous and R. Saito, “Physics of Carbon nanotubes”, Carbon 33, 883—891 (1995).
8. N. Hamada, S. Sawada and A. Oshiyama, “New one-dimensional conductors: graphite microtubules”, Phys. Rev. Lett. 68, 1579—1581 (1992).
9. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, “Electronic structure of chiral grapheme tubules”, Appl. Phys. Lett. 60, 2204—2206 (1992).
10. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smally and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature 391, 59—62 (1998).
11. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter and P. C. Eklund, “Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes”, Phys. Rev. Lett. 80, 3779—3782 (1998).
12. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and P. Poulin, “Macroscopic fibers and ribbons of oriented carbon nanotubes”, Science 290, 1331—1334 (2000).
13. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes”, Nature 381, 678—680 (1996).
14. R. H. Baughman, “Putting a new spin on carbon nanotubes”, Science 290, 1310—1312 (2000).
15. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Klang, D. S. Bethune and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature 386, 377—379 (1997).
16. M. Volpe and F. Cleri, “Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes”, Chem. Phys. Lett. 371, 476—482 (2003).
17. C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, Jr. and B. Fultz, “Hydrogen desorption and adsorption measurements on graphite nanofibers”, Appl. Phys. Lett. 73, 3378—3380 (1998).
18. P. Chen, X. Wu, J. Lin and K. L. Tan, “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature”, Science 285, 91—93 (1999).
19. R. T. Yang, “Hydrogen storage by alkali-doped carbon nanotubes-revidited”, Carbon 38, 623—641 (2000).
20. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, “Hydrogen storage in single-walled carbon nanotubes at room temperature”, Science 286, 1127—1129 (1999).
21. Y. Gao and Y. Bando, “Carbon nanothermometer containing gallium”, Nature 415, 599 (2002).
22. P. Kim and C. M. Lieber, “Nanotube nanotweezers”, Science 286, 2148—2150 (1999).
23. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, “Surface studies by scanning tunneling microscopy”, Phys. Rev. Lett. 49, 57—61 (1982).
24. G. Binnig, C. F. Quate and Ch. Gerber, “Atomic force microscope”, Phys. Rev. Lett. 56, 930—933 (1986).
25. S. S. Wong, A. T. Woolley, E. Joselevich and C. M. Lieber, “Functionalization of carbon nanotube AFM probes using tip-activated gases”, Chem. Phys. Lett. 306, 219—225 (1999).
26. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smally, “Nanotubes as nanoprobes in scanning probe microscopy”, Nature 384, 147—150 (1996).
27. J. H. Hafner, C. L. Cheung and C. M. Lieber, “Growth of nanotubes for probe microscopy tips”, Nature 398, 761—762 (1999).
28. J. H. Hafner, C. L. Cheung and C. M. Lieber, “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips”, J. Am. Chem. Soc. 121, 9750—9751 (1999).
29. S.-D. Tzeng , C.-L. Wu, Y.-C. You, T. T. Chen, S. Gwo and H. Tokumoto, “Charge imaging and manipulation using carbon nanotube probes”, Appl. Phys. Lett. 81, 5042—5044 (2002).
30. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smally, “Unraveling Nanotubes: Field Emission from an Atomic Wire”, Science 269, 1550—1553 (1995).
31. Walt A. de Heer, A. Châtelain and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”, Science 270, 1179—1180 (1995).
32. Y. Saito, S. Uemura and K. Hamaguchi, “Carbon ray tube lighting elements with carbon nanotube field emitters”, Jpn. J. Appl. Phys. 37, L346—348 (1998).
33. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito and S. Uemura, “Synthesis and purification of multi-walled carbon nanotubes for field emitter applications”, Diamond Relat. Mater. 8, 785—791 (1999).
34. Y. Saito and S. Uemura, “Field Emission from Carbon Nanotubes and its Application to Electron Sources”, Carbon 38, 169—182 (2000).
35. O. M. Kuttel, O. Groning, C. Emmenegger, L. Nilsson, E. Mallard, L. Diederich and L. Schlapbach, “Field emission from diamond, diamond-like and nanostructured carbon films”, Carbon 37, 745—752 (1999).
36. J. M. Kim, H. W. Lee, Y. S. Coi, J. E. Jung, N. S. Lee, Y. W. Jin and N. S. Park, “Five inch full color field emission displays with narrow gap studies”, J. Vac. Sci. Technol. B 17, 744—749 (1999).
37. N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee and J. M. Kim, “Application of carbon nanotubes to field emission displays”, Diamond Relat. Mater. 10 265—270 (2001).
38. F. Okuyama, T. Hayashi and Y. Fujimoto, “Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes”, J. Appl. Phys. 84(3), 1626—1631 (1998).
39. H. Ajiki and T. Ando, “Carbon nanotubes as quantum wires on a cylinder surface”, Solid State Commun. 102, 135—142 (1997).
40. C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes”, Appl. Phys. Lett. 70(11), 1480—1482 (1997).
41. R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73(17), 2447—2449 (1998).
42. J. Han, A. Globus, R. Jaffe and G. Deardorff, “Molecular dynamics simulation of carbon nanotube based gears”, Nanotechnology 8, 95—102 (1997).
43. T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, “Purification of nanotubes”, Nature 367, 519 (1994).
44. T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature 358, 220—221 (1992).
45. J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq and J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes”, Chem. Phys. Lett. 226, 364—371 (1994).
46. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E. Smally, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science 273, 483—487 (1996).
47. Peter J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge, University Press, 18—19 (1999).
48. M. Endo, K. Takeachi, S. Igarashi, K. Kobori, M. Shiraishi and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, J. Phys. Chem. Solids 54, 1841—1848 (1993).
49. B. C. Statish Kumar, A. Govindaraj and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures : role of the metal nanoparticles produces in situ”, Chem. Phys. Lett. 307, 158—162 (1999).
50. V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts , G. Van Tendeloo , S. Amelinckx and J. Van Landuyt , “The study of carbon nanotubes produced by catalytic method”, Chem. Phys. Lett. 223, 329—335 (1994).
51. Y. Q. Hou, D. M. Zhuang, G. Z., M. S. Wu and J. J. Liu, “Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes”, Appl. Surf. Sci. 185, 303—308 (2002).
52. O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, “Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma”, Appl. Phys. Lett. 73, 2113—2115 (1998).
53. N. M. Rodriguuez, “A review of catalytically grown carbon nanofibers”, J. Mater. Res. 8, 89—90 (1964).
54. A. Gorbunov, O. Jost, W. Pompe and A. Graff, “Solid-liquid-soilid growth mechanism of sing-wall carbon nanotubes”, Carbon 40, 113—118 (2002).
55. H. Kanzow and A. Ding, “Formation mechanism of single-well carbon nanotubes on liquid-metal particles”, Phys. Rev. B 60, 11180-11186 (1999).
56. K. Hata, A. Takakura and Y. Saito, “Field emission from multiwall carbon nanotubes in controlled ambient gases, H2, CO, N2 and O2”, Ultramicroscopy 95, 107—112 (2003).
57. L. Zhang, H. Li, K. T. Yue, S. L. Zhang, X. Wu, J. Zi, Zujin Shi and Z. Gu, “Effects of intense laser irradiation on Raman intensity features of carbon nanotubes”, Phys. Rev. B 65, 073401-1—073401-4 (2002).
58. J. -M. Bonard, R. Gaal, S. Garaj, L. Thien-Nga and L. Forró, K. Takahashi, F. Kokai, M. Yudasaka and S. Iijima, “Field emission properties of carbon nanohorn films”, J. Appl. Phys. 91, 10107—10109 (2002).
59. H. F. Cheng, “In situ spectroscopic examination of plasma emission during excimer laser deposition of Pb0.95La0.05(Zr0.7Ti0.3)0.9875O3 thin films”, Jpn. J. Appl. Phys. 34, 5751—5757 (1995).
60. S. Akita, S. Kamo and Y. Nakayama, “Diameter control of arc produced multiwall carbon nanotubes by ambient gas cooling”, Jpn. J. Appl. Phys. 41(2), L487—L489 (2002).
61. S. Akita, H. Ashihara and Y. Nakayama, “Optical emission spectroscopy of arc flame plasma for generation of carbon nanotubes”, Jpn. J. Appl. Phys. 39(1), 4939—4944 (2000).
62. X. Zhao, T. Okazaki, A. Kasuya, H. Shimoyama and Y. Ando, “Optical emission spectra during carbon nanotube production by arc discharge in H2, CH4 or He gas”, Jpn. J. Appl. Phys. 38(1), 6014—6016 (1999).
63. A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, A. P. Volkov and Yu. P. Svirko, “Chemical vapor deposition of carbon films: in-situ plasma diagnostics”, Carbon 41, 836—839 (2003).
64. R. C. Weast, CRC handBook of chemistry and physics, 1st ed., CRC Press, Boca Raton, 10-144—10-145 (1988).
65. D. S. Rickerby and A. Matthews, Advanced surface coatings: a habdbook of surface engineering, Blackie & Son Ltd., London, 196—197 (1991).
66. L. Nordheim, “Zur theorie der thermischen emission und der rdflexion von elektronen an metallen”, Z. Phys. 46, 833—843 (1927).
67. R. H. Fowler and L. Nordheim, “Electron emission in Intense Electric Fields”, Proc. R. Soc. London, Ser. A 119, 173—181 (1928).
68. A. Modinos, “Field, thermionic, and secondary electron emission spectroscopy”, Plenum Press, New York, U.S.A., 1—167 (1984).
69. E. L. Murphy and R. H. Good, “Thermionic emission, field emission, and the transition region.” Phys. Rev. 102, 1464—1473 (1956).
70. J. M. Bonard, J. P. Salvetat, Thomas Stöckli, W. A. de Heer, László Forró and André Châtelain, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett. 73, 918—920 (1998).
71. P. Vincent, S. T. Purcell, C. Journet, and V. T. Binh, “Modelization of resistive heating of carbon nanotubes during field emission”, Phys. Rev. B 66, 075406-1—075406-5 (2002).
72. J. P. Sun, Z. X. Zhang, S. M. Hou, G. M. Zhang, Z. N. Gu, X. Y. Zhao, W. M. Liu and Z. Q. Xue, “Work function of single-welld carbon nanotubes determined by field emission microscopy”, Appl. Phys. A 75, 479—483 (2002).
73. D. T. Colbert and R. E. Smalley, “Electric effects in nanotube growth”, Carbon 33, 921—924 (1995).
74. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes”, Phys. Rev. Lett. 82, 2548—2551 (1999).
75. M. Ge and K. Sattler, “Vapor-condensation and STM analysis of Fullerene tubes”, Science 260, 515—518 (1993).
76. N. Lin, J. Ding, S. Yang and N. Cue, “Scanning tunneling microscopy and spectroscopy of a carbon nanotube”, Carbon 34, 1295—1297 (1996).
77. T. M. Kalotas, A. R. Lee, J. Liesegang and A. Alexopoulos, “Dipole tip model investigation of resonance effects in scanning tunneling microscopy”, Appl. Phys. Lett. 69, 1710—1712 (1996).
78. L. P. Biro, J. Gyulai, Ph. Lambin, J. B. Nagy, S. Lazarescu, G. I. Mark, A. Fonseca, P. R. Surjan, Zs. Szekeres, P. A. Thiry and A. A. Lucas, “Scanning tunneling microscopy (STM) imaging of carbon nanotubes”, Carbon 36, 689—696 (1998).
79. U. Hubler, P. Jess, H. P. Lang, H. –J. Güntherodt, J.-P. Salvetat and L. Forró , “Scanning probe microscopy of carbon nanotubes”, Carbon 36, 697—700 (1998).
80. J. Yamashita, H. Hirayama, Y. Ohahima and K. Takayanagi, “Growth of a single-wall carbon nanotube in the gap of scanning tunneling microscope”, Appl. Phys. Lett. 74, 2450—2452 (1999).
81. T. lnoue, D. F. Ogletree and M. Salmeron, “Field emission study of diamond-like carbon films with scanned-probe field-emission force microscopy”, Appl. Phys. Lett. 76, 2961—2963 (2000).
82. P. Kim, T. W. Odom, J. Huang and C. M. Lieber, “STM study of single-walled carbon nanotubes”, Carbon 38, 1741—1744 (2000).