簡易檢索 / 詳目顯示

研究生: 陳芸
Chen, Yun
論文名稱: 醫師對人工智慧應用於醫療照護與樂活健康準備度之研究
A Survey of Physician's Readiness Toward Artificial Intelligence Applied on Healthcare and Health Promotion
指導教授: 季力康
Chi, Li-Kang
口試委員: 陳美燕
Chen, Mei-Yen
謝邦昌
Shia, Ben-Chang
季力康
Chi, Li-Kang
口試日期: 2022/08/08
學位類別: 碩士
Master
系所名稱: 樂活產業高階經理人企業管理碩士在職專班
Executive Master of Business Administration Program in Lifestyles of Health and Sustainability
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 醫學教育課程智慧醫療健康促進能力認知擔憂期待
英文關鍵詞: Medical education, curriculum, smart healthcare, health promotion, ability, cognition, worry, expectation
研究方法: 實驗設計法調查研究
DOI URL: http://doi.org/10.6345/NTNU202201662
論文種類: 學術論文
相關次數: 點閱:567下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工智慧 (Artificial intelligence, AI) 被認為在醫療照護與樂活健康領域之應用深具潛力,導因於AI系統對大量資訊數據的蒐集處理及運算的高效能,若能適切地應用在疾病預測分析、影像診斷、臨床決策輔助、個人精準醫學等等用途時,不但能夠有助於降低醫療人員的工作負荷,亦能夠提升預防醫學的實用價值。然而當AI被使用在這些醫療或健康範疇時,醫護等應用人員所該具備的相關知識、能力與態度,包括在應用過程中輸入數據的準確性與可靠性、輸出結果的判讀能力與解釋力、資訊的隱私維護等等,成為AI是否能適切地應用在醫療照護與健康促進的重要人為因子。本研究欲以問卷調查的方式,瞭解臨床醫師們對於人工智慧應用在醫療照護以及健康促進的準備度,並從認知、能力、態度、擔憂、期望不同面向進行分析。問卷填答對象為2021年9月到2022年5月在北部某醫學中心服務的實習醫學生、住院醫師、主治醫師,共回收232份有效問卷。問卷內容經過編碼之後,通過信度與效度分析驗證其為有效的研究工具。分析結果顯示,整體受訪醫師們各因素的平均分數為「能力」3.07分、「期望」4.13分、「擔憂」3.25分、「認知」3.46分、「態度」3.75分,以及「整體準備度」3.49分。針對受訪醫師的年齡、性別、身份別、專業科別及畢業學校加以分層分析,可以發現「整體準備度」分數主要會受到專業科別、身份別以及畢業學校影響而有顯著的不同;科別差異上以PGY一般科醫師以及影像醫學科醫師準備度較高,婦產部與麻醉部醫師較低;身份別上以PGY一般科醫師較高。年齡與性別的差異雖未影響整體準備度,但年齡的差異會影響「擔憂」分數,以20-30歲的醫師最高分;性別的差異則是在「擔憂」與「認知」兩個因素上有顯著的不同,其中男性「認知」分數顯著較高但是「擔憂」分數顯著較低。由本研究結果得知,臨床醫師自評對於人工智慧應用在醫療照護以及樂活健康的準備度普遍落在普通到同意之間。透過分層分析發現最年輕世代的PGY醫師對AI應用有顯著較高的解釋能力及擔憂程度於是具備較高的整體準備度,然而在「認知」的部份尚未有顯著提高。未來如何從醫學教育方面補強人工智慧在醫療與健康應用的相關知識與技能,將會是重要的課題。

    Artificial intelligence (AI) is considered to have great potential in the field of medical care and health promotion, due to the high efficiency of AI systems in the collection, processing and calculation of large amounts of information data. If it can be properly applied in disease prediction analysis It can not only help reduce the workload of medical personnel, but also enhance the practical value of preventive medicine. However, when AI is used in these medical or health fields, the relevant knowledge, abilities and attitudes that medical and nursing personnel should have, including the accuracy and reliability of input data during the application process, and the ability to interpret and explain the output results. , information privacy maintenance, etc., have become an important human factor for whether AI can be properly applied in medical care and health promotion. The results of the analysis showed that the average scores of each factor among the interviewed physicians were 3.07 points for "ability", 4.13 points for "expectation", 3.25 points for "worry", 3.46 points for "cognition", 3.75 points for "attitude", and 3.49 points for "overall readiness". By stratified analyses among age, gender, identity, specialty, and graduation school, it can be found that the "overall readiness" score is significantly different by specialty, identity, and graduation school. In terms of specialty, PGY general physicians and the physicians in imaging medicine had higher readiness, while physicians in obstetrics and anesthesia departments were lower; PGY general physicians have higher readiness score than other identities. Although the difference in age and gender did not affect the overall readiness, the difference in age did affected the score of "worry", with the highest score for physicians aged 20-30. The gender difference is significantly different in the two factors of "worry" and "cognition", with males having significantly higher "cognition" scores but significantly lower "worry" scores. According to the results of this study, clinicians' self-assessed readiness for the application of artificial intelligence in medical care and health promotion generally falls between average and agree. It is found that the youngest generation, PGY physicians, have significantly higher explanatory ability and worry about AI application, thus having a higher overall readiness. However, there is no corresponding improvement in the "cognition" in these PGY physicians. From the perspective of medical education, it will be an important tsak to help strengthen the knowledge and skills of AI-related medical and health applications in the future.

    第壹章 緒論 1 第一節 前言 1 第二節 研究目的 3 第三節 研究問題 4 第四節 研究假設 5 第五節 研究範圍與限制 5 第六節 研究重要性 6 第七節 名詞操作型定義 6 第貳章 文獻探討 8 第一節 學習理論-學習準備度 8 第二節 醫學人工智慧的準備狀態 10 第三節 焦慮感對於醫師學習人工智慧的影響 11 第四節 國際間對於醫師對於人工智慧應用在醫學領域的看法與態度的研究 12 第五節 不同臨床科別醫師在應用AI的態度與準備度的差異性 13 第六節 不同性別對應用AI的態度與準備度的差異性 14 第七節 AI人工智慧的認知與態度相關研究量表 15 第參章 研究方法 17 第一節 研究架構 17 第二節 研究流程 18 第三節 問卷設計、研究方法與流程 19 第四節 問卷效度與信度分析 20 第五節 資料處理與分析 23 第肆章 研究結果與討論 24 第一節 填答醫師基本資料分析 24 第二節 問卷資料整體分析 28 第三節 問卷資料分層分析:年齡分層 36 第四節 問卷資料分層分析:性別分層 41 第五節 問卷資料分層分析:專業科別分層 45 第六節 問卷資料分層分析:身份別分層 51 第七節 問卷資料分層分析:畢業學校分層 56 第伍章 結論與建議 62 第一節 結論 62 第二節 建議 66 引用文獻 68 附錄 73 附錄一 亞東紀念醫院人體試驗審查委員會核准證明 73 附錄二 問卷內容 74 附錄三 問卷原文 86 附錄四 問卷授權使用同意函 88

    衛生福利部 (2016)。2025衛生福利政策白皮書。https://oliviawu.gitbooks.io/2025-whbook/content/
    Alexander, K. L., Entwisle, D. R., & Bedinger, S. D. (1994). When expectations work: Race and socioeconomic differences in school performance. Social psychology quarterly, 283-299.
    Bian, L., Leslie, S.-J., & Cimpian, A. J. S. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. 355(6323), 389-391.
    Bloom, B. S. (1976). Human characteristics and school learning. McGraw-Hill.
    Boshier, R. (1971). Motivational orientations of adult education participants: A factor analytic exploration of Houle's typology. J Audlt education, 21(2), 3-26.
    Boshier, R., & Riddell, G. (1978). Education participation scale factor structure for older adults. J Adult education, 28(3), 165-175.
    Brouillette, M. (2019). AI added to the curriculum for doctors-to-be. Nat Med, 25(12), 1808-1809.
    Bruner, J. (1996). The culture of education. Harvard University Press.
    Cambridge Dictionary, C. D. (2022a). Artificial Intelligence. Cambridge University Press. https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E-%E6%BC%A2%E8%AA%9E-%E7%B9%81%E9%AB%94/artificial-intelligence
    Cambridge Dictionary, C. D. (2022b). Healthcare. Cambridge University Press. https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E-%E6%BC%A2%E8%AA%9E-%E7%B9%81%E9%AB%94/healthcare
    Cambridge Dictionary, C. D. (2022c). Readiness. Cambridge University Press. https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E-%E6%BC%A2%E8%AA%9E-%E7%B9%81%E9%AB%94/readiness
    Carlson, R. (1992). The Making of an Adult Educator. Malcolm Knowles. 1989. San Francisco: Jossey-Bass. Canadian Journal for the Study of Adult Education, 6(1), 81-86. https://cjsae.library.dal.ca/index.php/cjsae/article/view/2280
    Castagno, S., & Khalifa, M. (2020). Perceptions of Artificial Intelligence Among Healthcare Staff: A Qualitative Survey Study. Front Artif Intell, 3, 578983. https://doi.org/10.3389/frai.2020.578983
    Cheryan, S., Master, A., & Meltzoff, A. N. J. F. i. p. (2015). Cultural stereotypes as gatekeepers: Increasing girls’ interest in computer science and engineering by diversifying stereotypes. 49.
    Conley, C. (2015). SEL in higher education. Handbook of social emotional learning: Research practice, 197-212.
    Costa-jussà, M. R. (2019). An analysis of gender bias studies in natural language processing. Nature Machine Intelligence, 1(11), 495-496.
    Dangol, R., & Shrestha, M. (2019). Learning readiness and educational achievement among school students. The International Journal of Indian Psychology, 7(2), 467-476.
    Draper, S. W. (2008). Tinto’s model of student retention. https://www.psy.gla.ac.uk/~steve/localed/tinto.html
    Duke University, D. U. MD+Master of Engineering Dual Degree. https://bme.duke.edu/masters/degrees/md-meng
    European Commission Directorate-General for Health and Food Safety, E. C. (2012). eHealth Action Plan 2012-2020: Innovative healthcare for the 21st century. https://ec.europa.eu/digital-single-market/en/news/ehealth-action-plan-2012-2020-innovative-healthcare-21st-century
    Goh, P.-S., & Sandars, J. (2020). A vision of the use of technology in medical education after the COVID-19 pandemic. MedEdPublish, 9(49), 49.
    Gong, B., Nugent, J. P., Guest, W., Parker, W., Chang, P. J., Khosa, F., & Nicolaou, S. J. A. r. (2019). Influence of artificial intelligence on Canadian medical students' preference for radiology specialty: ANational survey study. 26(4), 566-577.
    IBM Cloud Education, I. C. E. (2020). Artificial Intelligence (AI). https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
    Karaca, O., Caliskan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) - development, validity and reliability study. BMC Med Educ, 21(1), 112. https://doi.org/10.1186/s12909-021-02546-6
    Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers. Association Press, New York.
    Knowles, M. S. (1989). The making of an adult educator: An autobiographical journey. Jossey-Bass.
    Leavy, S. (2018). Gender bias in artificial intelligence: The need for diversity and gender theory in machine learning. Proceedings of the 1st international workshop on gender equality in software engineering,
    Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. J. S. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. 347(6219), 262-265.
    Lewin, K. (1943). Defining the'field at a given time.'. Psychological review, 50(3), 292.
    Master, A., Meltzoff, A. N., & Cheryan, S. J. P. o. t. N. A. o. S. (2021). Gender stereotypes about interests start early and cause gender disparities in computer science and engineering. 118(48), e2100030118.
    McKeachie, W. J. (1990). Learning, thinking, and Thorndike. Educational Psychologist, 25(2), 127-141.
    McLeod, S. (2007). Jean Piaget's theory of cognitive development.
    Morstain, B. R., & Smart, J. C. (1974). Reasons for participation in adult education courses: A multivariate analysis of group differences. J Adult education, 24(2), 83-98.
    Nature Reseach Custom Media, N. R. C. M. (2020). Using AI to make healthcare more human. https://www.nature.com/articles/d42473-020-00350-2
    O’ Driscoll, T. (2020). Changing the Way We Change. Brightline Project Management Institute. https://www.brightline.org/resources/changing-the-way-we-change/
    Oh, S., Kim, J. H., Choi, S. W., Lee, H. J., Hong, J., & Kwon, S. H. (2019). Physician Confidence in Artificial Intelligence: An Online Mobile Survey. J Med Internet Res, 21(3), e12422. https://doi.org/10.2196/12422
    Olasode, T. (2022). AI & Gender – Bridging the gap. https://cseaafrica.org/ai-gender-bridging-the-gap/
    Pann State University, P. S. U. Joint Doctor of Medicine (M.D.)/Doctor of Philosophy (Ph.D.) in Engineering Science and Mechanics. https://www.esm.psu.edu/academics/graduate/joint-md-phd-engineering-science-and-mechanics.aspx
    Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S., Staab, W., Kleinert, R., . . . Baeßler, B. J. E. r. (2019). Medical students' attitude towards artificial intelligence: a multicentre survey. 29(4), 1640-1646.
    Scheetz, J., Rothschild, P., McGuinness, M., Hadoux, X., Soyer, H. P., Janda, M., . . . van Wijngaarden, P. (2021). A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Scientific Reports, 11(1), 5193. https://doi.org/10.1038/s41598-021-84698-5
    Schein, E. H. (1996). Kurt Lewin's change theory in the field and in the classroom: Notes toward a model of managed learning. Systems practice, 9(1), 27-47.
    Schein, E. H. (2002). The anxiety of learning. Interview by Diane L. Coutu. Harvard Business Review, 80(3), 100-106, 134.
    Schlossberg, N. K., & Goodman, J. (2005). Counseling adults in transition. Springer Publishing Company.
    Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., Azam, A., Monzon, L., & Poon, D. S. J. I. i. i. (2020). Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey. 11(1), 1-6.
    Thomas, P. A., Kern, D. E., Hughes, M. T., Tackett, S. A., & Chen, B. Y. (2016). Curriculum development for medical education: a six-step approach. JHU press.
    Thomas, S. (2017). Artificial Intelligence and Medical Liability (Part II). http://blogs.harvard.edu/billofhealth/2017/02/10/artificial-intelligence-and-medical-liability-part-ii/#more-20718
    Thorndike, E. L. (1935). The psychology of wants, interests and attitudes. Appleton-Century.
    Tinto, V. (2010). From theory to action: Exploring the institutional conditions for student retention. In Higher education: Handbook of theory and research (pp. 51-89). Springer.
    U.S. Food & Drug Administration, U. S. F. D. A. (2017). Digital Health Innovation Action Plan. https://www.fda.gov/media/106331/download
    U.S. Food & Drug Administration, U. S. F. D. A. (2020). What is Digital Health? https://www.fda.gov/medical-devices/digital-health-center-excellence/what-digital-health
    UNICEF Evaluation Office, U. E. O. (2012). Evaluation Report: Global Evaluation of Life Skills Education Programs. United Nations Children’s Fund.
    World Economic Forum, W. E. F. (2018). Assessing Gender Gaps in Artificial Intelligence. https://reports.weforum.org/global-gender-gap-report-2018/assessing-gender-gaps-in-artificial-intelligence/#hide/fn-25
    World Health Organization, W. H. O. (2022a). eHealth. http://www.emro.who.int/health-topics/ehealth/
    World Health Organization, W. H. O. (2022b). Health Promotion. https://www.who.int/westernpacific/about/how-we-work/programmes/health-promotion

    下載圖示
    QR CODE