簡易檢索 / 詳目顯示

研究生: 簡日昇
Rih-Sheng Jian
論文名稱: 微型氣相層析儀
Micro Gas Chromatograph
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 170
中文關鍵詞: 微機電系統微型氣相層析儀揮發性有機物即時分析
英文關鍵詞: MEMS, micro gas chromatograph, volatile organic compounds, real-time analysis
論文種類: 學術論文
相關次數: 點閱:187下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以結合微機電與非微機電技術,開發一部能夠快速分析環境中複雜揮發性有機物的微型氣相層析儀,本研究之主要工作包含:(一) 利用微機電製程之關鍵元件:多段式微前濃縮晶片、微層析晶片以及奈米金-阻抗式感測器,搭配小型氣體幫浦與小型電磁閥,組裝整合出第一代之微小化氣相層析系統,以抽取周圍空氣,並透過除水分子篩與活性碳過濾水氣及背景有機物後,作為系統的載流氣體,不需使用氣體鋼瓶,達到儀器較小體積與輕量化並適合長時間的操作。結果顯示,7種有機氣體可在2分鐘內達到有效分離並由奈米金-阻抗式偵測器偵測之,其儀器偵測下限可達2.6 ng (n-octane)。 (二) 將第一代儀器調整關鍵元件並重新設計,使用多柱狀陣列微前濃縮晶片內含燒結碳膜作為吸附質更換原有之多段式微前濃縮晶片,以及用光游離偵測器取代奈米金-阻抗式偵測器,使整體系統穩定度提高,全系統體積最小達到20 × 10 × 6 cm之第二代原型儀器。6種有機氣體可在2分鐘內達到有效分離並由光游離偵測器偵測之,其儀器偵測下限可達10 ppb (m-xylene)於1.0 L採樣體積。 (三) 本階段開發一部高可靠度之應用型微型氣相層析儀,並以非微機電方式製作高流量採樣模組、快速溫控之毛細管層析分離模組、光游離偵測器,內嵌入式一部平板電腦,功能整合出第三代微型氣相層析儀,實驗結果顯示,隨著快速溫控程式該儀器可在2分鐘內有效分析10種有機化合物,儀器偵測下限值達0.02到 0.36 ppb於1.0 L採樣體積,儀器在超過24小時連續操作下,積分面積相對標準偏差值介於2.2 % (benzene, n=120)到5 % (m-xylene, n=120),且該原型儀器可手持式獨立操作,不需要外接電腦進行控制。 (四) 此原型儀器應用於鄰近工業區之學校與半導體無塵室內,進行現場有機氣體之即時分析,搭配不鏽鋼採樣筒之美國環保署TO-15標準分析方法,採樣結果藉由氣相層析質譜儀進行分析,以提供分析比對。結果顯示,個別分析出的有機化合物可呈現出濃度隨著時間變化之趨勢,學校內濃度範圍介於0.1到4.8 ppb,而無塵室內濃度範圍介於0.3到20 ppb,此數據可提供作為暴露於有機氣體汙染之健康評估;隨著呈現出的實驗結果,此微型氣相層析儀原型儀器證實可應用於有機氣體快速分析與現場環境監測。

    This research reports the development of a micro gas chromatograph (μGC) that uses hybridization of both non-MEMS and MEMS-based analytical components for rapid and complex environmental volatile organic compounds (VOCs) analysis. The key tasks of this research are: (1) A first-generation μGC prototype was integrated by MEMS-fabricated key components such as multi-stage μ-preconcentrator, μ-column, μ-chemiresistor detector and hybridized with miniature pump and available μ-valves. The scrubbed air was used as the carrier gas in order to achieve smaller size, lightweight and long-term continuous operation. Vapor mixtures of 7 compounds were successfully separated and to be detected by the micro-chemiresistor in less than 2 minutes. The initial result indicates that the detection limits was 2.6 ng for n-octane. (2) Design and improve components of the first-generation μGC prototype: A μ-SPME array coated with in-situ-synthesized carbon adsorbent film replaces the original multi-stage μ-preconcentrator, a photoionization detector (PID) replaces the μ-chemiresistor detector to enhance stability of the μGC. The size of second-generation μGC prototype of fully function system is only 20 (L) × 10 (W) × 6 (H) cm. Vapor mixtures of 5 compounds are successfully separated and to be detected by the PID in less than 2 minutes. The detection limit was as low as 10 ppb in 1.0 L air sample for xylene. (3) The goal developed a ready-to-use and highly reliable third-generation μGC system with the non-MEMS components and a tablet computer embedded. This system consists of a multi-stage preconcentrator/injector module, a capillary column module with at-column heater configuration and a PID unit. As a result, the separation of the 10 compounds in only 2 minutes was achieved by using fast at-column heating. This detection limit ranged from 0.02 to 0.36 ppb was obtained with 1.0 L sample volume. The variation in peak areas ranged from 2.2% (benzene, n=120) to 5.2% (m-xylene, n=120) for continuous operation over 24 h. This instrumentation presents a stand-alone system that can provide hand-held operation without an external computer. (4) Field studies of real-time VOCs analysis were in a school adjacent to industrial area and a semiconductor fabrication clean room. In addition, canisters were collected and analyzed by GC-MS to provide the side-by-side comparisons. Field study Results indicate the trends of concentrations for all chemical species over time. Concentrations ranged from 0.1 to 4.8 ppb in the school and ranged from 0.3 to 20 ppb in the clean room. These data can provide a good indication of health assessments while exposure to VOCs. This prototype μGC demonstrated the capability for fast and continuous field analysis for complex VOCs in field studies.

    中文摘要………………………….i 英文摘要………………………………………………………………...iii 目錄………………………………………………………………………v 表目錄…………………………………………………………………xi 圖目錄……………………………………………………………….....xiii 第一章 緒論 1-1 研究背景、目的及架構………………………...................1 1-2有機化合物氣相分析方法原理及流程……………..........5 1-2-1 前濃縮方法概念…………………………………..7 1-2-2 層析分離管柱技術應用…………………………10 1-2-3 氣體偵測器種類及應用………………………....12 1-3微機電製程技術與微小化分析系統之結合……………14 1-3-1 微機電-前濃縮裝置介紹………………………..15 1-3-2 微機電-層析分離晶片裝置介紹………………..17 1-3-3 微機電-氣體偵測裝置介紹……………………..21 1-4微型氣相層析系統功能整合介紹……………………..25 1-5微型氣相層析儀之未來發展………………………......29 第二章 微機電分析元件與複合型微氣相層析系統研究 2-1 前言…………………………………………………….31 2-2 實驗部份……………………………………………….33 2-2-1 晶片型微前濃縮裝置製作……………………..33 2-2-2 晶片型層析分離管柱靜相塗佈與組裝………..35 2-2-3 奈米金-阻抗式氣體偵測器組裝………………37 2-3 微型氣相層析儀之奈米金-阻抗式偵測系統整合........40 2-4 結果與討論 (一)……………………………………47 2-4-1電路設計與訊號之提升………………………...47 2-4-2 奈米金-阻抗式偵測系統分析結果……………52 2-4-3 奈米金-阻抗式偵測系統校正曲線探討………54 2-4-4 奈米金-阻抗式之微型氣相層析儀偵測下限…56 2-4-5不同採樣體積之探討…………………………...57 2-5 微型氣相層析儀之光游離偵測系統整合…………….59 2-6 結果與討論 (二) ……………………………………64 2-6-1光游離偵測系統分析結果……………………...64 2-6-2光游離偵測系統校正曲線探討………………...66 2-6-3光游離偵測系統偵測下限之探討……………...67 2-7 結論…………………………………………………….69 第三章 應用型微型氣相層析系統技術開發 3-1 前言 …………………………………………………...71 3-2 實驗部份……………………………………………….73 3-2-1高流量採樣器設計組裝………………………...73 3-2-2毛細管型分離模組設計組裝…………………...75 3-2-3光游離偵測器電路設計與組裝………………...77 3-3 系統軟、硬體架構整合……………………………….79 3-4 結果與討論…………………………………………….87 3-4-1 光游離偵測器輔助氣流之探討………………..87 3-4-2 高流量採樣器採樣效率之探討………………..89 3-4-3 儀器穩定度測試………………………………..91 3-4-4 不同溫控程式分析結果之探討………………..95 3-4-5 系統分析校正曲線探討………………………..97 3-4-6 儀器偵測下限結果探討…………………..........99 3-5 結論 ………………………………………………….101 第四章 微型氣相層析系統應用於工業區有機氣體之研究 4-1 前言…………………………………………………103 4-2 實驗部份……………………………………………105 4-2-1 工業區監測地點簡述…………………………105 4-2-2工業區內微型氣相層析儀系統架設……….…108 4-3 結果與討論…………………………………………111 4-3-1 攜帶式光游離偵測器工業區有機污染巡查....111 4-3-2 工業區微型氣相層析儀即時偵測分析………114 4-3-3 工業區採樣筒-氣相層析質譜儀分析結果…116 4-3-4 工業區現場有機氣體校正曲線結果…………119 4-3-5 工業區有機氣體濃度隨時間變化之探討……121 4-4 結論…………………………………………………131 第五章 微型氣相層析系統應用於半導體有機氣體之研究 5-1 前言…………………………………………………...133 5-2 實驗部份……………………………………………...136 5-2-1 半導體無塵室監測地點簡述…………………136 5-2-2 半導體無塵室內微型氣相層析儀系統架設…138 5-3 結果與討論…………………………………………...140 5-3-1 無塵室微型氣相層析儀即時偵測分析….…140 5-3-2 無塵室採樣筒-氣相層析質譜儀分析結果…142 5-3-3 無塵室有機氣體校正曲線結果………….…146 5-3-4 無塵室有機氣體濃度隨時間變化之探討….147 5-4 結論…………………………………………………...157 第六章 總結 6-1研究執行結論…………………………………………159 6-2未來可行性之評估……………………………………163 參考文獻………………………………………………………………165

    [1] J. M. Delgado-Saborit, N. J. Aquilina, C. Meddings, S. Baker and R. M. Harrison, Sci. Total Environ. 409 (2011) 478.
    [2] H. W. Liu, B. Z. Wu, H. C. Nian, H. J. Chen, J. G. Lo and K. H.
    Chiu, Environ. Sci. Pollut. Res. 19 (2012) 303.
    [3] K. H. Chiu, B. Z. Wu, C. C. Chang, U. Sree and J. G. Lo, Environ.
    Sci. Technol. 39 (2005) 973.
    [4] J. Caro and M. Gallego, Chemosphere 77 (2009) 426.
    [5] M. Kampa and E. Castanas, Environ. Pollut. 151 (2008) 362.
    [6] U.S. EPA OSWER. Draft Guidance for Evaluating the Vapor
    Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), USEPA530-D-02-004.
    [7] ATSDR. Toxicological Profile for Trichloroethylene (TCE); U.S.
    Department of Health and Human Services, September, 1997.
    [8] Inficon Co., LTD.: http://www.inficon.com.
    [9] Y. C. Tsao, C. F. Wu, P. E. Chang, S. Y. Chen and Y. H. Hwang, Sci. Total Environ. 409 (2011) 3158.
    [10] J. W. Childers, E. L. Thompson Jr., D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke and W. J. Phillips, Atmos. Environ. 35 (2001) 1923.
    [11] I. Ahonen, H. Riipinen and A. Roos, Analyst 121 (1996) 1253.
    [12] E. B. Overton, U.S. Patent 6 068 684.
    [13] D. X. Wang, S. L. Chong and A. Malik, Anal. Chem., 69 (1997) 4566.
    [14] R. P. Manginell and G. C. Frye-Mason, U.S. Patent 6 666 907.
    [15] R. P. Manginell, G. C. Frye-Mason, E. J. Heller and D. R. Adkins, U.S. Patent 6 669 392.
    [16] S. J. Martin, in Proc. Ultrasonics Symp. 1 (1998) 423.
    [17] J. W. Grate, Chem. Rev., 100 (2000) 2627.
    [18] C. S. Cheng, Y. Q. Chen and C. J. Lu, Talanta 73 (2007) 358.
    [19] Y. Q. Chen and C. J. Lu, Sens. Actuators B: Chem. 135 (2009) 492.
    [20] K. J. Chen and C. J. Lu, Talanta 81 (2010) 1670.
    [21] T. Karakouz, A. Vaskevich and I. Rubinstein, J. Phys. Chem. B 112 (2008) 14530.
    [22] L. E. Kreno, J. T. Hupp and R. P. Van Duyne, Anal. Chem. 82 (2010) 8042.
    [23] J. M. Bingham, J. N. Anker, L. E. Kreno and R. P. Van Duyne, J. Am. Chem. Soc. 132 (2010) 17358.
    [24] Compendium method TO-15, determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography/mass spectrometry, U.S. Environmental Protection Agency, Washington, DC., 1999.
    [25] Compendium method TO-14A, determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography, U.S. Environmental Protection Agency, Washington, DC, 1999.
    [26] Compendium Method TO-16, determination of Toxic Organic Compounds in Ambient Air ,U. S. Environmental Protection Agency, Washington, DC, 1999.
    [27] R. Reiss, Atmos. Environ., 40 (2006) 4711.
    [28] F. M. J. Vukovich, Air & Waste Manage. Assoc., 50 (2000) 1843.
    [29] G. Sistla, E. Zalewasky and R. J. Henry, Air & Waste Manage. Assoc., 52 (2002) 181 52.
    [30] K. L. Yang, C. C. Ting, O. W. Wingenter, C. C. Chan and J. L. Wang, Atmos. Environ., 39 (2005) 3221.
    [31] C. H. Lin, Y.-L Wu, C. H. Lai and P. H. Lin, Atmos. Environ., 38 (2004) 4267.
    [32] R. F. LeBouf, A. B. Stefaniak and M. Abbas Virji, J. Environ. Monit. 14 (2012) 977.
    [33] P. Bocchini, D. D. Monaco, R. Pozzi, F. Pinelli and G. C. Galletti, Microchim. Acta 165 (2009) 271.
    [34] S. Risticevic, V. H. Niri, D. Vuckovic and J. Pawliszyn, Anal. Bioanal. Chem. 393 (2009) 781.
    [35] M. L. Lee , D. L. Vassilaros and C. M. White, Anal. Chem. 51 (1979) 768.
    [36] Supelco Inc. / USA Http://www.supelco.com
    [37] NIOSH Manual of Analytical methods (Method P&CAM 127), 1977.
    [38] P. Saarinen and J. Kauppinen, Appl. Spectrosc. 45(1997) 953.
    [39] A. Hakuli, A. Kytokivi, E.-L. Lakomaa and O. Krause, Anal. Chem. 67 (1995) 1881.
    [40] T. Sukaew, H. Chang, G. Serranoab and E. T. Zellers, Analyst 136 (2011) 1664.
    [41] J. H. Seo, S. K. Kim, E. T. Zellers and K. Kurabayashi, Lab Chip 12 (2012) 717.
    [42] W. C. Tian, H. K. L. Chan, C. J. Lu, S. W. Pang and E. T. Zellers, J. Microelectromech. Syst. 14 (2005) 498.
    [43] W. C. Tian, T. H. Wu, C. J. Lu, W. R. Chen and H. J. Sheen, J. Micromech. Microeng. 22 (2012) 065014.
    [44] S. C. Terry, J. H. Jerman and J. B. Angell, IEEE Trans. Electron Device 26 (1979) 1880.
    [45] R. W. Tjerkstra, M. de Boer, E. Berenschot, J. G. E. Gardeniers, A. van den Berg and M. C. Elwenspoek, Electro. Chim. Acta 42 (1997) 3399.
    [46] M. J. de Boer, R. W. Tjerkstra, J. W. Berenschot, Henri V. Jansen, G. J. Burger, J. G. E. Gardeniers, M. Elwenspoek and A. van den Berg, J. Microelectromech. S. 9 (2000) 1.
    [47] G. R. Lambertus, A. Elstro, K. Sensenig, J. Potkay, M. Agah, S. Scheuering, K. Wise, F. Dorman and R. Sacks, Anal. Chem. 76 (2004) 2629.
    [48] G. R. Lambertus, J.A. Crank, M. E. McGuigan, S. Kendler, D. W. Armstrong and R. D. Sacks, J. Chromatogr. A 1135 (2006) 230.
    [49] S. J. Kim, G. Serrano, K. D. Wise, K. Kurabayashi and E. T. Zellers, Anal. Chem. 83 (2011) 5556.
    [50] W. Kuipers and J. Müller, Talanta 82 (2010) 1674.
    [51] H. Wohltjen and A. W. Snow, Anal. Chem. 70 (1998) 2856.
    [52] A. W. Snow and H. Wohltjen, Chem. Mater.10 (1998) 947.
    [53] P. R. Lewis, P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowski, D. E. Trudell, J. E. Byrnes, M. Okandan, J. M. Bauer, R. G. Manley and C. Frye-Mason, IEEE Sensors J. 6 (2006) 784.
    [54] F. P. Zamborini, L. E. Smart, M. C. Leopold and R. W. Murray, Anal. Chim. Acta 496 (2003) 3.
    [55] L. Han, D. R. Daniel, M. M. Maye and C. J. Zhong, Anal. Chem. 73 (2001) 4441.
    [56] Q. Y. Cai and E. T. Zellers, Anal. Chem. 74 (2002) 3533.
    [57] C. J. Lu, J. Whiting, R. D. Sacks and E. T. Zellers, Anal. Chem. 75 (2003) 1400.
    [58] C. J. Lu, W. H. Steinecker, W. C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, J. A. Potkay, H. K. L. Chan, J. Driscoll, R. D. Sacks, K. D. Wise, S. W. Pang and E. T. Zellers, Lab Chip 5 (2005) 1123.
    [59] P. R. Lewis, P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowski, D. E. Trudell, J. E. Byrnes, M. Okandan, J. M. Bauer, R. G. Manley and C. Frye-Mason, IEEE Sensors J. 6 (2006) 784.
    [60] S. Zampolli, I. Elmi, F. Mancarella, P. Betti, E. Dalcanale, G. C. Cardinali and M. Severi, Sens. Actuators B : Chem. 141 (2009) 322.
    [61] S. K. Kim, D. R. Burris, J. Bryant-Genevier, K. A. Gorder, E. M. Dettenmaier and E. T. Zellers, Environ. Sci. Technol. 46 (2012) 6073.
    [62] K. D. Wise, R. Sacks, K. T. Beach, J. A. Potkay, M. Agah, U.S. Patent 20030233862.
    [63] A. Wheeler and A.J. J . Robell, Catalysis 13 (1969) 299.
    [64] C. J. Lu and E. T. Zellers, Anal. Chem. 73 (2001) 3449.
    [65] M. Brust, M. Walker, D. Bethell, D. Schiffrin and R. Whyman, J. Chem. Soc. Chem. Commun. (1994) 801.
    [66] R. W. Murray, Chem. Rev. 108 (2008) 2688.
    [67] C. J. Lu and E. T. Zellers, Analyst 127 (2002) 1061.
    [68] G. E. Spangler, Anal. Chem. 70 (1998) 4805.
    [69] 經濟部工業局資訊網, Http:// www.moeaidb.gov.tw/
    [70] M. Y. Wong, W. R. Cheng, M. H. Liu, W. C. Tian and C. J. Lu, Talanta 101 (2012) 307.
    [71] L.Miller, X. Xu, A. Grgicak-Mannion, J. Brook and A. Wheeler, Atmos. Environ. 61 (2012) 305.
    [72] B. Seifert and D. Ullrich, Atmos. Environ. 21 (1987) 395.
    [73] L. C. Holcomb and B. S. Seabrook, Indoor Environ. 4 (1995) 7.
    [74] C. Y. Peng, S. L. Hsiao, C. H. Lan and Y. L. Huang, Environ. Monit. Assess.185 (2013) 181.

    下載圖示
    QR CODE