簡易檢索 / 詳目顯示

研究生: 蔡振鏞
Chen-Yung Tsai
論文名稱: 以直流磁控濺鍍氮化鈦薄膜於AZ31鎂合金之最適化製程
The Optimum Processes of TiN Films Deposited on AZ31 Magnesium Alloys by DC Magnetron Sputtering
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 102
中文關鍵詞: 氮化鈦濺鍍鎂合金
英文關鍵詞: titanium nitride, sputter, magnesium alloy
論文種類: 學術論文
相關次數: 點閱:545下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金的密度為1.74 g/cm3,為輕金屬結構最輕者。然而,鎂有高腐蝕電流的趨勢,在工業上鎂則有高溫低強度及較差抗磨損能力之不利條件。由過去的研究結果顯示,經由物理汽相沉積(PVD)技術沉積薄膜可以克服上述缺點,加上氮化鈦具有高硬度、耐磨耗、抗腐蝕等特點,所以本研究係以直流式非平衡磁控濺鍍系統,將氮化鈦薄膜沉積在AZ31鎂合金上。本實驗採用L9直交表所配置的參數有基板溫度、靶材電流、負偏壓、及試片至靶材的距離等,製備後的試片則以X光繞射檢測薄膜晶體結構,以SEM觀察薄膜橫斷面形貌,以α-step量測薄膜厚度,以維克氏硬度儀量測硬度,以原子力顯微鏡量測表面粗糙度,以洛氏壓痕試驗及刮痕試驗來鑑定薄膜附著性。

    從實驗結果顯示:氮化鈦薄膜的優選方向為(111)、硬度值分佈由1242.99至1761.74 Hv,粗糙度值分佈由1.526至4.352 nm,在洛氏壓痕實驗得知氮化鈦薄膜沉積在鎂合金上有不錯的附著性,以試片S5為例進行刮痕試驗,得其附著力為10 N。同時,本研究以田口方法針對薄膜沉積速率、硬度及表面粗糙度等品質特性進行分析,得其沉積速率最適化參數為:基材溫度110℃、靶材電流0.7A、負偏壓50V、試片距離110mm;硬度最適化參數為:基板溫度110℃、靶材電流0.5A、負偏壓100V、試片距離150mm;表面粗糙度最適化參數為:基板溫度150℃、靶材電流0.5A、負偏壓50V、試片距離150mm。

    Magnesium alloys is one of the lightest construction metals with a density of 1.74 g/cm3. However, Mg alloys has a high tendency to galvanic corrosion. Other disadvantages in industrial of Mg alloys are low strength at elevated temperatures and poor wear resistance. Based on the previous studies, the deposition of coatings via physical vapor deposition (PVD) technologies seems to overcome these drawbacks. Besides, TiN thin films have excellent hardness; good wear resistance, and high corrosion resistance. Therefore, this study to deposited titanium nitride (TiN) thin films on AZ31 magnesium alloys using DC unbalance magnetron (UBM) sputtering system. The parameters used L9 orthogonal array, including temperature of substrate, current of target, negative bias, and specimen-target distance. After deposition, the thin film structure was characterized by X-ray diffraction (XRD), and the cross-section was observed by scanning electron microscopy (SEM). The thickness of TiN films was measured by alpha-step. The hardness of thin film was measured by Vickers test. The roughness of thin film was determined by atomic force microscopy (AFM). The adhesion of thin film was measured by Rock-Well indentation test and scratch test.

    The results showed that TiN films has (111) preferred orientation. The hardness of those films is from 1242.99 to 1761.74 Hv. The roughness of those films is from 1.526 to 4.352 nm. And from Rock-Well indentation test showed the TiN films deposited on magnesium alloys has a good adhesion. Take S5 for example, it shows that the adhesion is about 10N on scratch test. At the same time, those thin films in order to find out the parameters of optimum conditions were analyzed by Taguchi method on quality characteristic like the deposition rate, hardness and roughness. From the statistical analysis, the optimum conditions for the maximum deposition rate are : temperature = 110℃, current = 0.7A, negative bias = 100V, and specimen-target distance = 110mm. The optimum conditions for the maximum hardness are : temperature = 110℃, current = 0.5A, negative bias = 100V, and specimen-target distance = 150mm. The optimum conditions for the minimum roughness are : temperature = 150℃, current = 0.5A, negative bias = 50V, and specimen-target distance = 150mm.

    誌謝…………………………………………………………….. Ⅰ 中文摘要……………………………………………………….. Ⅱ 英文摘要……………………………………………………….. Ⅲ 總目錄………………………………………………………….. Ⅴ 圖目錄………………………………………………………….. Ⅸ 表目錄…………………………………………………………..ⅩⅡ 第一章 前言……………………………………………………..1 1-1 研究動機…………………………………………………..1 1-2 研究目的…………………………………………………..4 第二章 文獻回顧………………………………………………. 6 2-1 磁控濺鍍技術……………………………………………. 6 2-1-1 磁控濺鍍系統種類………………………………….. 6 2-1-2 濺鍍原理…………………………………………….. 9 2-1-3 反應性濺鍍………………………………………….. 9 2-1-4 離子轟擊……………………………………………..11 2-2 基礎電漿……………………………………………….. 13 2-2-1 電漿基本性質………………………………………..14 2-2-2 依熱力學分類………………………………………..14 2-2-3 依氣體壓力分類……………………………………..15 2-2-4 依氣體放電方式分類………………………………..16 2-2-5 電漿反應式…………………………………………..19 2-2-6 電漿顏色……………………………………………..20 2-2-7 電漿表面處理效能…………………………………..21 2-3 TiN薄膜…………………………………………………..22 2-3-1 TiN性質及晶體結構………………………………….22 2-3-2 薄膜成長過程………………………………………..23 2-3-3 薄膜之結構模型……………………………………..24 2-4 鎂合金…………………………………………………….26 2-4-1 鎂合金分類…………………………………………..26 2-4-2 鎂合金性質…………………………………………..27 2-4-3 表面處理方式………………………………………..28 2-5 田口品質工程…………………………………………….35 2-5-1 田口基本原理………………………………………..36 2-5-2 直交表………………………………………………..36 2-5-3 訊躁比………………………………………………..37 2-5-4 品質特性……………………………………………..38 2-5-5 數據解析與確認實驗………………………………..39 第三章 實驗方法與步驟……………………………………..41 3-1 濺鍍系統及實驗基材…………………………………….41 3-2 實驗流程………………………………………………….44 3-3 薄膜檢測與量測………………………………………….47 3-3-1 薄膜結構檢測………………………………………..47 3-3-2 膜厚量測……………………………………………..47 3-3-3 橫斷面形貌觀察與成份檢測………………………..48 3-3-4 粗糙度量測及3D表面形貌觀察……………………..49 3-3-5 附著性檢測…………………………………………..51 3-3-6 微硬度量測…………………………………………..52 3-4 田口品質特性分析……………………………………….54 第四章 實驗結果與討論……………………………………….55 4-1 薄膜檢測與量測結果…………………………………….55 4-1-1 晶體結構檢測………………………………………..55 4-1-2 膜厚量測……………………………………………..58 4-1-3 橫斷面形貌觀察及成份分析………………………..61 4-1-4 粗糙度量測及3D表面形貌觀察……………………..63 4-1-5 微硬度量測…………………………………………..67 4-1-6 附著性檢測…………………………………………..68 4-2 薄膜沉積速率分析……………………………………….72 4-2-1 田口實驗分析………………………………………..72 4-2-2 沉積速率與製程參數之關係………………………..73 4-2-3 變異數分析…………………………………………..75 4-2-4 製程參數對沉積速率的影響………………………..76 4-2-5 確認實驗……………………………………………..78 4-3 薄膜微硬度分析………………………………………….81 4-3-1 田口實驗分析………………………………………..81 4-3-2 微硬度與製程參數之關係…………………………..82 4-3-3 變異數分析…………………………………………..83 4-3-4 製程參數對微硬度的影響…………………………..84 4-3-5 確認實驗……………………………………………..86 4-4 薄膜粗糙度分析………………………………………….89 4-4-1 田口實驗分析………………………………………..89 4-4-2 粗糙度與製程參數之關係…………………………..90 4-4-3 變異數分析…………………………………………..91 4-4-4 製程參數對粗糙度的影響…………………………..93 4-4-5 確認實驗……………………………………………..93 第五章 結論…………………………………………………….96 參考文獻………………………………………………………….98

    1. G. L. Makar and J. Kruger, "Corrosion of magnesium",
    International Materials Reviews, Vol.38, No.3, (1993).
    2. J. H. Nordlien, S. Ono, N. Masuko, and K.Nisancioglu, "A
    TEM investigation of naturally formed oxide films on
    pure agnesium", Corrosion Science, Vol.39, (1997) p.1397.
    3. W. A. Ferrando, "Review of corrosion and corrosion
    control of magnesium alloys and composites", J. Mater.
    Eng. 11, (1989) pp.299-313.
    4. A. L. Olsen, "Corrosion properties of new magnesium
    alloys", Metall 466, (1992) pp.570-574 (in German).
    5. Guangling Song, Andrej Atrens, Xianliang Wu, and Bo
    Zhang, "Corrosion behavior of AZ21, AZ501 and AZ91 in
    sodium chloride", Corrosion Science, Vol.40, No 10,
    (1998) pp.1769-1791.
    6. B. Window, "Issues in magnetron sputtering of hard
    coatings", Surface and Coating Technology, 81(1), (1996)
    pp.92-98.
    7. J. E. Gray and B. Luan, "Protective coatings on
    magnesium and its alloys – a critical review", Journal
    of Alloys Compounds, 336, (2002) pp.88-113.
    8. G. Reiners and M. Griepentrog, "Hard coatings on
    magnesium alloys by sputter deposition using a pulsed
    D.C. bias voltage", Surface and Coatings Technology, 76–
    77, (1995) pp.809-814.
    9. Frank Hollstein, Renate Wiedemann, and Jana
    Scholz, "Characteristics of PVD-coatings on AZ31hp
    magnesium alloys", Surface and Coatings Technology, 162,
    (2003) pp.261-268.
    10. Z. P. Hung, Y. Sun, and T. Bell, Wear, 173, (1994) p.13.
    11. 楊玉森、陳瑜堯、吳政道,"以非平衡磁控濺射法蒸鍍類鑽石薄
    膜",金屬熱處理44期,(民84)。
    12. B. Window and N. Savvides, "Charged particle fluxes
    from planar magnetron sputtering sources", Journal of
    Vacuum Science Technology, A4(2), (1986).
    13. J. Musil, "Low-pressure magnetron sputtering", Journal
    of Vacuum, (1998) pp.363-372.
    14. B. Chapman, "Glow discharge processes", John Wiley and
    Sons, (1980).
    15. ReactafloTM Instruction Manual, Huntington : Megatech
    Limited Company, (2001).
    16. 陳松德,"濺鍍鉭基薄膜的相轉變機制與在銅金屬化處理之擴散
    阻障層性質研究",逢甲大學材料科學研究所碩士論文,(民
    88)。
    17. C. Pivin, "Review an overview of ion sputtering physics
    and practical implications", Journal of Materials
    Science, 18, (1983) pp.1267-1290.
    18. D. S. Rickerby and A. Mattews, "Advanced surface
    coatings", New York,Chapman & Hall, (1991) p.21.
    19. A. M. Howwastson, "An introduction to gas discharge",
    Pergamon Press Chapter 4, (1976) p.84.
    20. 莊達人,"VLSI製造技術",台北:高立出版社,(民91) p.868。
    21. S. C. Brown, "Basic data of plasma physics", M.I.T.
    Press, ambridge, (1996).
    22. 溫俊祥、胡應強、莊妙如,"電漿處理技術",工業材料雜誌197
    期,(民92) pp.161-170。
    23. D. S. Rickerby and A. Matthews, "Advanced surface
    coatings:a habdbook of surface engineering", Blackie &
    Son Ltd. , London, (1991).
    24. Vossen, John .L. and Kern, Werner, "Thin film processes
    II", Boston:Academic Press, (1991).
    25. 陳凱林,"半導體濺鍍靶材製程技術與薄膜特性",工業材料雜誌
    19期,(民92)。
    26. E. Nasser, "Fundamentals of gaseous ionization and
    plasma electronics", Wiely Interscience, (1971).
    27. R. V. Stuart, "Vacuum technology", New York:Academic
    Press, (1983).
    28. 賴耿陽,"IC製程之濺射技術",台南:復漢出版社,(民86)。
    29. R. L. Boxman, D. M. Sanders, and P. J.Martin, "Handbook
    of vacuum arc surface coatings technology", Science
    Technology:Fundamentals and Applications, Noyes
    Publications, New Jersey, (1995) p.513.
    30. J. Vetter, R Knaup, H. Dweletzki, E. Schneider, and S.
    Vogler, "Hard coatings for lubrication reduction in
    metal forming", Surface and Coatings Technology, (1996)
    pp.739-747.
    31. K. Holmberg and A. Matthews,"Coatings tribology",
    Elsevier, Netherlands, (1997) p.18.
    32. L. E. Toth, "Transition metal carbides and nitrides",
    New York, Academic Press, (1971).
    33. V. Valvoda, "Structure of TiN coatings", Surface and
    Coatings Technology, 80, (1996) pp.61-65.
    34. 竹田博光著(賴耿陽編),"陶瓷材料覆膜技術",台南:復漢出版
    社,(民83)。
    35. M. A. Nicolet, "Diffusion barriers in thin films", Thin
    Solid Films, 52, (1978) p.415.
    36. L. E. Toth, "In refractory materials", vol 7, Academic,
    New York, (1971).
    37. A. J. Perry and J.Schoenes, "In Proceedings", IPAT
    Fifth International Conference, (1985) p.452.
    38. L. E. Toth, "Transition metal carbides and nitrides",
    New York, Academic Press, (1971).
    39. Y. K. Wang, W. M. Wang, X. H. Cu, X. Y. Cheng, and B.
    S. Li., "A study of the oxide layer on the surface of a
    TiN coating", Materials Chemistry and Physics, Vol.36,
    (1993) pp.80-83.
    40. J. A. Thornon, "Influence of apparatus geometry and
    deposition conditions on the structure and topography
    of thick sputtered coatings", Journal of Vacuum Science
    Technology, Vol.11, (1974) pp.666-670.
    41. R. Messier, A. P. Giri, and R. A. Roy, "Revised
    structure zone model for thin films physical
    structure", Journal of Vacuum Science Technology, A2
    (2), (1984) pp.500-503.
    42. S. Ono, K. Asami, T. Osaka, and N.Masuko, "Structure of
    anodic films formed on magnesium", J. Electroclem.
    Soc. , Vol.143, (1996) pp.62-63.
    43. Mino, United states Patent, 497, (1990) p.3393.
    44. I. Shigematsu, M. Nakamura, N. Stitou, and K.
    Shimojima, "Surface treatment of AZ91D magnesium alloy
    by aluminum diffusion coating", Journal of Materials
    Science Letters 19, (2000) pp.473-475.
    45. A.Yamamoto, A.Watanabe, K. Sugahara, S. Fukumoto, and
    H.Tsubakino, "Deposition coating of magnesium alloys
    with pure magnesium", Materials Transactions, Vol.42,
    (2001) pp.1237-1242.
    46. 鄭燕琴,"田口品質工程技術理論與實務",中華民國品質學會發
    行,(民87)。
    47. 田口品質工程講座1,"開發設計階段的品質工程",中國生產力
    中心,(民89)。
    48. 黎正中譯,"穩健設計之之品質工程",台北圖書公司,(民82)。
    49. W. Heinke, A. Leyland, A. Matthews, G. Berg, C.
    Fridrich, and E. Broszeit, "Evaluation of PVD nitride
    coatings using impact scratch and rockwell-C adhesion
    tests", Thin Solid Films. Vol.270, (1995) pp.431.
    50. B.Jonsson and S. Hogmark, Thin solid films, 114, (1984)
    pp.257-269.
    51. W. K. Grant, C. Loomis, J. J. Moore, D. L. Olson, B.
    Mishra, and A. J. Perry, Surface and Coatings
    Technology, 86/87, (1996) p.788.
    52. J. F. Lin, M. H. Liu, and J. D. Wu, "Analysis of the
    friction and wear mechanisms of structural ceramic
    coatings Part 1: The effect of processing conditions",
    Wear, 194, (1996) pp.1-11.
    53. W. D. Sproul, P. J. Rudink, and M. E. Graham, Surface
    and Coatings Technology, 39/40, (1989) p.355.
    54. Harish C. Barshilia and K. S. Rajam, "Stracture and
    properties of reactive DC magnetron sputtered TiN/NbN
    hard superlattices", Surface and Coatings Technology,
    183, (2004) pp.174-183.

    QR CODE