簡易檢索 / 詳目顯示

研究生: 曾柏翔
Bo-Hsiang Tseng
論文名稱: 應用於腦電波量測之三維乾式電極製作技術開發
Fabrication of 3D dry electrode applied for EEG measurement
指導教授: 葉榮木
Yeh, Zong-Mu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 126
中文關鍵詞: 腦電波乾式電極KMPR厚膜光阻精密電鑄
英文關鍵詞: EEG, dry electrode, KMPR thick photoresist, electroforming
論文種類: 學術論文
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於近年來,腦電波雖然廣泛地應用於醫學臨床之診斷,與大腦人機界面系統,但其量測電極技術卻無顯著進步。故本研究提出一種新型腦波量測電極製造技術,利用微機電製程中,特有的矽基體型微加工技術、KMPR厚膜光阻微影、精密電鑄製程,並結合PDMS聚合物材料之選用。製造出於可撓曲基板上,擁有三維微探針陣列之乾式電極。有別於現今通用之銀/氯化銀電極,此新型量測電極,可於不需使用導電膠,且省略去角質等皮膚前處理的條件下,進行腦電波量測。
    於實驗中,建立新型厚膜光阻KMPR 1050之相關製程參數,使得以一次旋轉塗佈的製程,便可得到厚度約130 um之光阻膜。配合KOH蝕刻、精密電鑄製程與本實驗所提出之二階段式光阻去除步驟,可製作出高度約170 um、寬為 50 um(深寬比為3.5),且具出平面特性之微探針陣列。雖然此製程證明其製造上之可行性,但由於其製造良率低於50%。因此本研究中,提出三種改善良率之製程,藉以希望達到微機電製程中,特有的批次生產能力。

    The research has developed a novel method of microneedle array through the combination of integrating silicon bulk micromachining, thick photoresist KMPR1050, electroforming and polymer material PDMS.The microneedle array was successful fabricated on a flexible PDMS substrate. This study complete establish experimental parameters of KMPR, and can produce thickness of 130 um KMPR by single spin. Combination of 130 um KMPR, KOH etching, electroforming, two-step removing KMPR, the length of the microneedle array is 170 um and width is 50 um (aspect ratio, 3.5) which is out of plane was successful fabricated on a flexible PDMS substrate.

    摘 要 I 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1生理訊號產生與傳遞介紹 3 1.2.2腦電波概論 9 1.2.3生理訊號感測電極 15 1.3 研究動機與目的 18 1.4 論文架構 20 第二章 文獻回顧 21 2.1 應用於腦電波量測之乾式電極 21 2.2 三維微探針陣列製作方法 30 2.2.1 以矽基加工製作三維微探針陣列 30 2.2.2 以非矽基加工製作三維微探針陣列 33 2.3 微電極阻抗量測系統之原理與方法 43 2.4 微電極-皮膚-微電極界面等效阻抗量測系統之原理方法 47 第三章 三維乾式電極之設計 52 3.1 三維微探針陣列特性 52 3.2 三維微探針陣列之設計 54 3.3 三維乾式電極之設計 57 第四章 實驗設計與製程 61 4.1 實驗規劃 61 4.2 實驗製程 66 4.2.1 微探針陣列製程 66 4.2.2 三維乾式電極製備流程 72 4.2.3 三維乾式電極於腦波量測 74 4.3 實驗設備 76 第五章 實驗結果與討論 86 5.1 KMPR厚膜光阻製程 86 5.2 微探針陣列製程 97 5.2.1 初始規劃製程之製作結果討論 97 5.2.2 提升製程良率之規劃與結果討論 104 5.2.2.1 第一代製程改良 107 5.2.2.2 第二代製程改良 112 5.2.2.3 第三代製程改良 117 第六章 結論與未來展望 121 6.1 結論 121 6.2 未來展望 122 參考文獻 123

    參考文獻
    1. G. J. Tortora, “Principles of human anatomy 10th ed”, John Wiley & Sons, (2004).
    2. 許世昌, "新編解剖生理學", 永大書局有限公司, (1999).
    3. W. F. Ganong, “Review of medical physiology 10th ed”, Lange Medical Publications, (1981).
    4. N. Schaul, “The fundamental neural mechanisms of electroencephalography”, Electroencephalography and clinical Neurophysiology, Vol. 106, pp. 101-107, (1998).
    5. T. Togawa, T. Tamura and P. A. Oberg, “Biomedical Transducers and Instruments”, CRC Press LCC, (1997).
    6. L. J. Patrick and J. B. Stanton, ”The EEG in clinical practice”, Livingstone, (1996).
    7. A. Searle and L. Kirkup, ”A direct comparison of wet, dry and insulating bioelectric recording electrodes”, Physiol. Meas., Vol. 21, pp. 271-238, (2000).
    8. H. A. Miller and D. C. Harrison, “Biomedical electrode technology”, Academic Press, pp. 169-181, (1974).
    9. H. A. Miller and D. C. Harrison, “Biomedical electrode technology”, Academic Press, pp. 183-192, (1974).
    10. B. A. Taheri, R. T. Knight and R. L. Smith, “An active, microfabrication, scalp electrode-array for EEG recording”, The 9th International Conference on Solid-State Sensw’s and Actuators, and urosensors IX, pp. 67-70, (1995).
    11. B. A. Taheri, R. T. Knight and R. L. Smith, “A dry electrode for EEG recording”, Electroencephalography and Clinical Neurophysiology, Vol. 90, pp. 376-383, (1994).
    12. P. Griss, P. Enoksson, T. L. Heli, P. Merilainen and S. Ollmar, “Spiked biopotential electrodes”, IEEE Journal of Microelectromechanical Systems, pp. 323-328, (2001).
    13. P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S.Ollmar, and G Stemme, “Micromachined electrodes for biopotential measurements”, Journal of microelectromechanical system, Vol. 10, pp 10-16, (2001).
    14. Multichannel systems, http://www.multichannelsystems.com/
    15. N.A. Blum, B.G. Carkhuff, H.K. Charles, R.L. Edwards, and R.A. Meyer, “Multisite microprobes for neural recordings”, IEEE Transactions on biomedical engineering, Vol. 38, pp. 68-74,( 1991).
    16. P. Griss, P. Enoksson and G. Stemme, “Barbed spike arrays for mechanical chip attachment”, The 14th IEEE international conference on micro electro mechanical systems, pp. 46-49. (2001)
    17. P. Thiebaud, C. Beuret, N.F. de Rooij, and M. Koudelka-Hep,”Microfabrication of Pt-tip microelectrodes,” Sensors and Actuators B, Vol. 70, pp 51-56, (2000).
    18. N. Wilke, A. Morrissey, S. Ye and J. O’Brien, “Fabrication and characterization of microneedle electrode arrays using wet etch technologies”, European micro and nano systems Conference, pp. 61-65, (2004).
    19. N. Akamatsu, T. Suzuki, K. Mabuchi, H. Fujita, B. J. Kim and S. Takeuchi, “Fabrication and evaluation of a silicon probe array on a flexible substrate for neural recording”, IEEE EMBS The 25th Annual International Conference, pp. 3802-3805, (2003).
    20. S. Takeuchi, T. Suzuki, K. Mabuchi and H. Fujita, “3D flexible multichannel neural probe array”, Jornal of micromechanics and microengineering, Vol. 14, pp. 104-107. (2004).
    21. A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined electrodes for retinal prostheses,” IEEE-EMB Special Topic Conference On Microtechnologies In The Medicine & Biology, pp. 76-79. (2002).
    22. L. C. Pan, P. W. Lin, F. G. Tseng and C. Lin , “Surface biopotential monitoring by needle type micro electrode array”, Sensors, Vol. 1, pp. 221-224, (2002).
    23. S. J. Dorgan and R. B. Reilly, “A model for human skin impendance during surface function neuromuscular stimulation”, IEEE Transactions on Rehabilitation Engineering, Vol. 7, No. 3, (1999).
    24. H. A. Miller and D. C. Harrison, “Biomedical electrode technology”, Academic Press, New York, pp. 123-138(1974)
    25. 陳昶孝, “高深寬比微型多探針電極陣列系統”, 國立清華大學微機電工程研究所碩士論文, (2006).
    26. 林育德, “生醫電訊號量測之干擾移除與雜訊分析”, 國立臺灣大學電機工程研究所博士論文, pp. 31-32 (1997).
    27. P. Griss, H. T. laakso, P. merilainen and G. Stemme, ”Characterization of micromachined spiked biopotential electrodes”, IEEE transactions on biomedical enginneering, Vol. 49, pp. 597-604, (2002).
    28. P. J. Rousche, D. S. Pellinen, D. P. Jr.Pivin, J. C. Williams, R. J. Vetter and D.R. Kirke, ”Flexible polyimide-based intracortical electrode arrays with bioactive capability,” IEEE Transactions on biomedical engineering, 48, pp. 361-371, (2001).
    29. J. F. Hetke, X. Xue, J. J. Zappia, and K. D.Wise, ”Batch fabricated thin-filmelectrodes for stimulation of the central auditory system,“ IEEE Transactions on Biomedical Engineering, Vol. 36, pp. 693 –704, (1989).
    30. N. A. Blum, B. G. Carkhuff, H. K. Jr.Charles, R. L. Edwards and R. A. Meyer, “ Multisite microprobes for neural recordings,” IEEE Transactionson biomedical engineering, Vol. 38, pp. 68-74, (1991).
    31. 莊昀儒, “微型高分子材料單石熱汽泡式微液滴產生系統之研發”, 國立清華大學工程與系統科學系, 博士論文, pp. 136-137, (2003).
    32. 楊智仲, “厚膜光阻製程應用於靜電驅動旋轉式微致動器”, 國立臺灣師範大學機電科技研究所, 碩士論文, pp. 37-57, (2004).
    33. 趙俊傑, “類LIGA製程應用於靜電式微致動器光開關之研製”, 國立臺灣師範大學工業教育學系, 碩士論文, pp. 88-94, (2003).
    34. F. G. Tseng, C. S. Yu, “Angle effect of ultrasonic agitation on the development of thick JSR THB-430N negative UV photoresist”, Microsystem technologies, Vol. 8, pp. 363-367 (2002).
    35. NANOTM SU-8 2000 negative UV photoresist data sheet.
    36. KMPR 1000 chemically amplified negative photoresist data sheet.

    無法下載圖示 本全文未授權公開
    QR CODE