簡易檢索 / 詳目顯示

研究生: 蔡豐聲
Feng-Sheng Tsai
論文名稱: 細胞集合的成長動力學
Growth Dynamics of Cell Assemblies
指導教授: 施茂祥
Shih, Mau-Hsiang
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 同步突觸可塑性脈衝動力學細胞集合同時性偵測的演化演算法複雜網路非線性動力學
英文關鍵詞: synchronization, synaptic plasticity, pulsedynamics, cell-assembly, coincidence-detection evolving algorithm, complex network, nonlinear dynamics
論文種類: 學術論文
相關次數: 點閱:181下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經生理學家Donald O. Hebb所提出的細胞集合學說,描述了大腦的神經線路可透過突觸的可塑性機制來產生自我持續的反射性活躍,並藉此產生相關區域神經元之間結構上的交互連結,以建構出腦內資訊表現的基本砌塊。在神經生理學上,已有越來越多的實驗證據支持Hebb的細胞集合學說,也因此促使了大量以突觸的可塑性機制為基礎的計算機及複雜網路模型的建立。透過這些模型的建立,同時引發了一個更深層的數學或生物上的問題:為何突觸的可塑性機制所蘊含的神經元群體之間隨時間與神經元活躍狀態相應變化的交互作用,能夠在細胞集合成長的動力過程中扮演著關鍵的角色? 藉由模型化神經元群體的自我組織動力行為,我們從中量化了兩種形態的可演化量,並發展出脈衝動力學的概念。從這兩種形態的可演化量所推導出的脈衝動力學定律,使得我們可數學地證明了在一個模擬腦神經元運作的高維度的交互連結自我組織系統中,因其可塑性而不斷變化且交互影響的可演化網路節點與耦合動力行為,最終可達到群體神經元的活躍同步化,並在此活躍同步化期間與相應產生的突觸增強作用形成了正回饋效應,藉此正回饋效應,群體神經元之間將可產生與活躍同步化相關的神經迴路。這個可演化的網路模型不但可詮釋出腦內複雜系統運作的動力方程,並且對Hebb所提出的細胞集合學說提供了一個精確的數學解釋。

    Donald O. Hebb's neurophysiological cell-assembly postulate provides the first description of a mechanism for synaptic plasticity by which cortical circuits might admit self-sustaining reverberatory activity to bind association-area neurons into the basic building blocks of information. There is increasing empirical support for Hebb's contribution to neuropsychological theory and there also stimulates an intensive effort to promote the building of computer or network models of the brain based on Hebbian synaptic plasticity. And that raises a profound mathematical or biological question: Why do those time- and activity-dependent interactions underlying plasticity allow neural populations to capture the characteristic property of the entire ensembles of cell assemblies? By modeling the neuronal ensemble dynamics of assembly organization, we quantify two evolutionary quantities that originate the concept of pulsedynamics, and with them come a formulation of a dynamical-combinatorial process in a huge, interconnected self-organizing system, in which the ongoing changes of the nodal-and-coupling dynamics underlying plasticity are guaranteed to result in group synchrony and sync-dependent circuits. This evolutionary network model
    serves to describe dynamic equations of the complex brain system and leads to a mathematical explanation for the mystery of the growth of cell assemblies.

    1 Introduction and preliminaries 1 1.1 Background to the consolidation problem . . . . . . 1 1.2 The consolidation problem . . . . . . . . . . . . . . 3 1.3 Outline of the approach . . . . . . . . . . . . . . . 4 2 Dynamics of evolutionary networks 6 2.1 A dynamical-combinatorial networked system . . . . . 6 2.2 Spontaneous order . . . . . . . . . . . . . . . . . . 9 3 The coincidence-detection evolving algorithm 11 3.1 The indicator . . . . . . . . . . . . . . . . . . . . 11 3.2 Network evolution based on coincidence-detection . . 12 4 Pulsedynamics 15 4.1 Energy functions vs. driving forces . . . . . . . . . 15 4.2 The fundamental law of pulsedynamics. . . . . . . . . 17 5 Synchronization and positive feedback 21 5.1 Excitability coordination. . . . . . . . . . . . . . 21 5.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . 22 5.1.1 The backward shift of the discrete flow . . . . . . 23 5.2.2 Estimates through the use of a dot-array . . . . . 25 5.2.3 Set as filters . . . . . . . . . . . . . . . . . . 31 5.2.4 Determine a transition state of neural activity . . 39 6 Conclusion 42 6.1 The consolidation mechanism . . . . . . . . . . . . . 42 6.2 Prospect . . . . . . . . . . . . . . . . . . . . . . 43 Reference 46

    [1] P. Adams, Hebb and Darwin, J. Theor. Biol., 195 (1998), pp. 419-438.
    [2] Y. Adini, D. Sagi, and M. Tsodyks, Context enabled learning in human visual system, Nature, 415 (2003), pp. 790-794.
    [3] J. A. Anderson, A simple neural network generating an interactive memory, Math. Biosci., 14 (1972), pp. 197-220.
    [4] J. A. Anderson and E. Rosenfeld, Neurocomputing, The MIT Press, Cambridge, 1988.
    [5] J. A. Anderson, J. W. Silverstein, S. A. Ritz, and R. S. Jones, Distinctive features, categorical perception, and probability learning: some applications of a neural model, Psychol. Rev., 84 (1977), pp. 413-451.
    [6] T. Ando and M.-H. Shih, Simultaneous contractibility, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 487-498.
    [7] T. V. P. Bliss and T. Lmo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.), 232 (1973), pp. 331-356.
    [8] I. Biederman, Recognition-by-components: a theory of human image understanding, Psychol. Rev., 94 (1987), pp. 115-147.
    [9] J. F. Brons and C. D. Woody, Long-term changes in excitability of cortical neurons after Pavlovian conditioning and extinction, J. Neurophysiol., 44 (1980),
    pp. 605-615.
    [10] T. G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression,
    and a theory of the evolution of function in the nervous system, J. Physiol., 48 (1914), pp. 18-46.
    [11] S. R. Cajal, La fine structure des centres nerveux, Proc. R. Soc. Lond., 55 (1894), pp. 444-468.
    [12] M. A. Cohen and S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions SMC, SMC-13 (1983), pp. 815-826.
    [13] F. Crick, Function of the thalamic reticular complex: the searchlight hypothesis, Proc. Natl. Acad. Sci. USA, 81 (1984), pp. 4586-4590.
    [14] A. R. Damasio, The brain binds entities and events by multiregional activation from convergence zones, Neural Comput., 1 (1989), pp. 123-132.
    [15] G. Daoudal and D. Debanne, Long-term plasticity of intrinsic excitability: learning rules and mechanisms, Learn. Mem., 10 (2003), pp. 456-465.
    [16] S. Dehaene, M. Kerszberg, and J.-P. Changeux, A neuronal model of a global workspace in e ortful cognitive tasks, Proc. Natl. Acad. Sci. USA, 95 (1998), pp. 14529-14534.
    [17] N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, Plasticity in the intrinsic excitability of cortical pyramidal neurons, Nature Neurosci., 2 (1999), pp. 515-520.
    [18] A. Destexhe and E. Marder, Plasticity in single neuron and circuit computations, Nature, 431 (2004), pp. 789-795.
    [19] G. M. Edelman, The Remembered Present, Basic Books, New York, 1989.
    [20] A. K. Engel, P. Fries, and W. Singer, Dynamic Predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci., 2 (2001), pp. 704-716.
    [21] A. K. Engel and W. Singer, Temporal binding and the neural correlates of sensory awareness, Trends Cogn. Sci., 5 (2001), pp. 16-25.
    [22] A. Forti and G. L. Foresti, Growing hierarchical tree SOM: an unsupervised neural network with dynamic topology, Neural Netw., 19 (2006), pp. 1568-1580.
    [23] S. Grossberg, Adaptive pattern classi cation and universal recoding, I: parallel development and coding of neural feature detectors, Biol. Cybern., 23 (1976),
    pp. 121-134.
    [24] S. Grossberg, Adaptive pattern classi cation and universal recoding, II: feedback, expectation, olfaction, and illusions, Biol. Cybern., 23 (1976), pp. 187-202.
    [25] S. Grossberg, How does a brain build a cognitive code?, Psychol. Rev., 87 (1980), pp. 1-51.
    [26] S. Grossberg, Nonlinear neural networks: principles, mechanisms, and architectures, Neural Netw., 1 (1988), pp. 17-61.
    [27] S. Grossberg, How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex, Spat. Vis., 12 (1999), pp. 163-185.
    [28] S. Grossberg, How does the cerebral cortex work? Development, learning, attention, and 3D vision by laminar circuits of visual cortex, Behavioral and Cognitive
    Neuroscience Reviews, 2 (2003), pp. 47-76.
    [29] K. D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsaki, Organization of cell assemblies in the hippocampus, Nature, 424 (2003), pp. 552-556.
    [30] D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949.
    [31] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA, 79 (1982), pp. 2554-2558.
    [32] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents using neatest neighbor rules, IEEE Trans. Automat. Contr., 48 (2003), pp. 988-1001.
    [33] B. Katz, On the quantal mechanism of neural transmitter release, in Nobel Lectures, Physiology or Medicine 1963-1970, Elsevier, Amsterdam, 1972, pp. 485-
    492.
    [34] M. Klein, B. Hochner, and E. R. Kandel, Facilitatory transmitters and cAMP can modulate accommodation as well as transmitter release in Aplysia sensory neurons. Evidence for parallel processing in a single cell, Proc. Natl.
    Acad. Sci. USA, 83 (1986), pp. 7994-7998.
    [35] J. Lucke, Hierarchical self-organization of minocolumnar receptive elds, Neural Netw., 17 (2004),
    pp. 1377-1389.
    [36] J. Lucke and C. V. D. Malsburg, Rapid processing and unsupervised learning in a model of the cortical macrocolumn, Neural Comput., 16 (2004), pp. 501-533.
    [37] C. V. D. Malsburg, The correlation theory of brain function, in Models of Neural Networks II, E. Domany, J. L. V. Hemmen, K. Schulten, eds., Springer, Berlin, 1994, pp. 95-119.
    [38] E. Marder, L. F. Abbott, G. G. Turrigiano, Z. Liu, and J. Golowasch, Memory from the dynamics of intrinsic membrane currents, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 13481-13486.
    [39] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), pp. 115-133.
    [40] B. Milner, L. R. Squire, and E. R. Kandel, Cognitive neuroscience and the study of memory, Neuron, 20 (1998), pp. 445-468.
    [41] M. Minsky, Computation: Finite and In nite Machines, Prentice-Hall, New York, 1967.
    [42] M. A. L. Nicolelis, E. E. Fanselow, and A. A. Ghazanfar, Hebb's dream: the resurgence of cell assemblies, Neuron, 19 (1997), pp. 219-221.
    [43] N. Rochester, J. H. Holland, L. H. Haibt, and W. L. Duda, Tests on a cell assembly theory of the action of the brain, using a large digital computer, IRE Trans. Inf. Theory, 2 (1956), pp. 80-93.
    [44] A. Roskies, The binding problem, Neuron, 24 (1999), pp. 7-9.
    [45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), pp. 533-536.
    [46] B. Schechter, How the brain gets rhythm, Science, 274 (1996), pp. 339-340.
    [47] T. J. Sejnowski, The book of Hebb, Neuron, 24 (1999), pp. 773-776.
    [48] C. S. Sherrington, The Integrative Action of the Nervous System, Yale University Press, New Haven, 1906.
    [49] M.-H. Shih, Simultaneous Schur stability, Linear Algebra Appl., 287 (1999), pp. 323-336.
    [50] M.-H. Shih and J.-L. Dong, A combinatorial analogue of the Jacobian problem in automata networks, Adv. in Appl. Math., 34 (2005), pp. 30-46.
    [51] M. Siegel, K. Kording, and P. Konig, Integrating top-down and bottom-up sensory processing by somato-dendritic interactions, J. Comput. Neurosci., 8 (2000), pp. 161-173.
    [52] A. M. Sillito, H. E. Jones, G. L. Gerstein, and D. C. West, Feature-linked synchronization of thalamic relay cell ring in-duced by feedback from the visual cortex, Nature, 369 (1994), pp. 479-482.
    [53] W. Singer and C. M. Gray, Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci., 18 (1995), pp. 555-586.
    [54] A. P. Sripati and K. O. Johnson, Dynamic gain changes during attentional modulation, Neural Comput., 18 (2006), pp. 1847-1867.
    [55] A. V. Stein, C. Chiang, and P. Konig, Top-down processing mediated by interareal synchronization, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 14748-14753.
    [56] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), pp. 268-276.
    [57] G. Tononi and G. M. Edelman, Consciousness and complexity, Science, 282 (1998), pp. 1846-1851.
    [58] G. Tononi, O. Sporns, and G. M. Edelman, Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual
    system, Cereb. Cortex, 2 (1992), pp. 310-335.
    [59] A. Treisman, Solutions to the binding problem: progress through controversy and convergence, Neuron, 24 (1999), pp. 105-110.
    [60] M. Tsodyks, Y. Adini, and D. Sagi, Associative learning in early vision, Neural Netw., 17 (2004), pp. 823-832.
    [61] G. G. Turrigiano, L. F. Abbott, and E. Marder, Activity-dependent changes in the intrinsic properties of cultured neurons, Science, 264 (1994), pp. 974-977.
    [62] F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, The brain-web: phase synchronization and large-scale integration, Nat. Rev. Neurosci., 2 (2001), pp. 229-239.
    [63] D. J.Watts and S. H. Strogatz, Collective dynamics of `small-world' networks, Nature, 393 (1998), pp. 440-442.
    [64] B. Widrow and M. E. Hoff, Adaptive switching circuits, IRE WESCON Convention Record, New York, 1960, pp. 96-104.
    [65] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, Non-holographic associative memory, Nature, 222 (1969), pp. 960-962.
    [66] A. Yazdanbakhsh and S. Grossberg, Fast synchronization of perceptual grouping in laminar visual cortical circuits, Neural Netw., 17 (2004), pp. 707-718.
    [67] W. Zhang and D. J. Linden, The other side of the engram: experience-driven changes in neuronal intrinsic excitability, Nature Rev. Neurosci., 4 (2003), pp. 885-900.

    QR CODE