簡易檢索 / 詳目顯示

研究生: 張書豪
Chang, Shu-How
論文名稱: 教室環境內多重人臉偵測與定位研究
Multiple Human Face Detection and Location in Classroom
指導教授: 李忠謀
Lee, Chung-Mou
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 52
中文關鍵詞: 多人臉偵測人臉定位物件追蹤
英文關鍵詞: multiple face detection, face location, object tracking, AdaBoost
論文種類: 學術論文
相關次數: 點閱:139下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人臉及人物偵測在智慧型監視環境中是一塊相當重要的研究主題,這項技術對於人類的生活具有相當廣泛的影響。以學習來說,將人臉偵測應用於教室環境中,能夠做為觀察學生上課行為模式的參考資料,他們的行為模式可以提供授課老師更多學習上的回饋。更能進一步延伸成上課點名系統,將點名工作自動化處理,減少老師在上課中花費的時間,提升教學品質。
    本研究針對教室環境實作多人臉的偵測,主要分成兩部份,利用人臉與人物的特性,以階層性的AdaBoost方法搭配過濾取得人臉。首先以人臉為主,實作一個改良型分類器,取出影像中所有可能的人臉區域。另外,加入人物偵測的方法增加人臉可靠度,以提升整體研究的正確率。最後我們提出一套類似物件追蹤方法的機制,Bubble-Developing Mechanism,讓人臉影像具有時間與定物特性,還能大幅提升偵測率,在單人偵測與多人偵測的實驗影片最高可達93%和89%的偵測率。

    Face detection and human detection are important in all surveillance method applications. In classroom, we can use detection to assist us to observe student activities. Their response will give some suggestions to teacher, and teacher can improve the teaching. Furthermore, it can extend automatically real-time roll call system to help teacher.
    We propose a new detection method in classroom. Our method employ a combination of AdaBoost classify faces, applied filter and HOG find trustworthy human face. Bubble-Developing Mechanism (BDM) is a similar object tracking method. It’s an easy way to solve the continuous problem in video sequence or live video. Bubble means individual face results in each of frame and they will have weights just like age. Growth over time, bubbles grow old or die. Because BDM have characteristics of time and continuous, it can enhance the performance of our method.
    In experiment results, improve AdaBoost and applied filters have a better frame rate than original AdaBoost for real-time face detection. BDM can achieve detection rate from 72% to 94% in single person detection and have average 85% detection rate in multiple people environment.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究範圍及限制 2 1.4 論文架構 3 第二章 文獻探討 4 2.1 人臉偵測技術探討 4 2.1.1 樣板比對 5 2.1.1 特徵方法 6 2.1.2 外觀法 7 2.2 人物偵測 7 第三章 研究方法基礎 9 3.1 人臉偵測 10 3.1.1 積分影像 11 3.1.2 矩形特徵、階層分類器與AdaBoost演算法 11 3.2 Histogram of Oriented Gradient 14 第四章 人臉偵測及定位方法 16 4.1 AdaBoost改良 17 4.2 過濾機制 18 4.2.1 Skin Color and Hair Estimation 19 4.2.2 Region of Variance 20 4.3 人物偵測輔助 21 4.4 Bubble-Developing Mechanism 21 4.4.1 Overview of BDM 22 4.4.2 Generation 24 4.4.3 泡泡成長 25 4.4.4 泡泡權重更新計算方法 26 第五章 實驗結果與討論 29 5.1 實驗影像資料庫 30 5.2 分類器的訓練影像建立 32 5.3 實驗驗證 33 5.3.1 單人環境影片實驗 34 5.3.2 多人環境影片實驗 36 5.3.3 光線影響 37 5.4 討論 38 第六章 結論 40 6.1 結論 40 6.2 未來研究 41 參考文獻 42 附件 47

    [1] Erik Hjelmås and Boon Kee Low, “Face Detection: A Survey”, Computer Vision and Image Understanding, Vol.83, Issue 3, pp. 236 – 274, Sep. 2001.
    [2] B. Froba and C. Kublbeck, “Robust Face Detection at Video Frame Rate based on Edge Orientation Features,” IEEE Conf. Automatic Face and Gesture Recognition, pp. 342 – 347, Washington, DC, USA. May, 2002.
    [3] A. Hamzah , A. Fauzan and M.S. Noraisyah, “Face Localization for Facial Features Extraction using a Symmetrical Filter and Linear Hough Transform” Artificial Life and Robotics, vol.12, pp. 157 – 160, Oita, Japan, Jan. 2007.
    [4] E. Osuna, R. Freund and F. Girosit,” Training Support Vector Machines: an Application to Face Detection,” Conf. on Computer Vision and Pattern Recognition, pp. 130 – 136, San Juan, Puerto Rico, Jun. 1997.
    [5] S. Sanjay Kr., D. S. Chauhan,V. Mayank and S. Richa, ”A Robust Skin Color Based Face Detection Algorithm,” Tamkang Journal of Science and Engineering, Vol. 6, No. 4, pp. 227 – 234, 2003.
    [6] P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," IEEE Conf. on Computer Vision and Pattern Recognition, Vol.1, pp. 511 – 518, Kauai, Hawaii, Dec. 2001.
    [7] C.R Wren, A. Azarbayejani, T. Darrell and A. Pentland, ” Pfinder: Real-Time Tracking of the Human Body” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, Issue 9, pp. 780 – 785, 1997.
    [8] H. Ismail, H. Davis and D. Larry S., “W4: Real-Time Surveillance of People and Their Activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, Issue 8, pp. 809 – 830, 2000.
    [9] M. Gavrila, V. Philomin, “Real-Time Object Detection for Smart Vehicles,” IEEE Conf. Computer Vision and Pattern Recognition, Vol. 1, pp. 87, Ft. Collins, U.S.A, Jun. 1999.
    [10] Y. Freund and R.E. Schapire, “A Decision-Theoretic Generalization of on-line Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol.55, No.1, pp. 119 – 139, Aug. 1997.
    [11] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” IEEE Conf. on Computer Vision and pattern Recognition, Vol. 1, pp. 886 – 893, San Diego, U.S.A, Jun. 2005.
    [12] N. Dalal, B. Triggs and C. Schmid, “Human Detection Using Oriented Histograms of Flow and Appearance,” IEEE Conf. on European Conference on Computer Vision, pp. 428 – 441, Graz, Austria, May. 2006.
    [13] P. Viola, M. Jones and D. Snow, “Detecting Pedestrians Using Patterns of Motion and Appearance” IEEE Conf. on Computer Vision, vol.2, pp. 734 – 741, Nice, France, Oct. 2003.
    [14] O. Zongying, T. Xusheng, S. Tieming and Z. Pengfei, “Cascade AdaBoost Classifiers with Stage Optimization for Face Detection”, Advances in Biometrics, Num. 3832, pp. 121 – 128, Berlin, Germany, Oct. 2005.
    [15] M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen, “Using the Skin Locus to Cope with Changing Illumination Conditions in Color-Based Face Tracking,” IEEE Nordic Signal, pp. 383 – 386, Sweden, Jul. 2000.
    [16] Y. Xu and C. Xiaowei, “A New Algorithm of Face Detection Based on Differential Images and PCA in Color Image”, IEEE Conf. on Computer Science and Information Technology, pp. 172 – 176, Beijing, China, Aug. 2009.
    [17] 張榮勝, 使用膚色比例前處理之即時性人臉偵測系統, 國立交通大學電信工程學系碩士論文, 六月 2007.
    [18] 黃泰祥, 具備人臉追蹤與辨識功能的一個智慧型數位監視系統, 中原大學電子工程學系碩士論文, 六月 2004.
    [19] W. Yan-wen and A. Xueyi, ”Face Detection in Color Images Using AdaBoost Algorithm Based on Skin Color Information”, International Workshop on Knowledge Discovery and Data Mining, , pp. 339 – 342, Adelaide, Australia, Jan. 2008.
    [20] W. Chi-Chen and L. Jenn-Jier, “AdaBoost Learning for Human Detection Based on HOG”, Asian Conference on Computer Vision, pp. 885 – 895, Tokyo, Japan, Nov. 2007.
    [21] Z. Qiang, A Shai, Y Mei-chen and C Kwang-ting, “Fast Human Detection Using a Cascade of Histograms of Oriented Gradients”, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1491 – 1498, New York, U.S.A, Jun. 2006.
    [22]F. Kevin, F. Sally, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”, Computer Communication Review, Vol. 26, Issue 3, pp. 5 – 21, Jul. 1996.
    [23] Open Source Computer Vision Library(OpenCV): http://opencv.willowgarage.com/wiki/
    [24] P. Minh-Tri and C. Tat-Jen, "Fast Training and Selection of Haar Features Using Statistics in Boosting-Based Face Detection," IEEE Conf. on Computer Vision, pp.1 – 7, Rio de Janeiro, Brazil, Oct. 2007.
    [25] D. B. Graham and N. M. Allinson, “Characterizing Virtual Eigensignatures for General Purpose Face Recognition”, Computer and Systems Sciences, Vol.163, pp. 446 – 456, 1998.
    [26] J. gkeun, L Kyunghee and P Sungbum, “Eye and Face Detection Using SVM” Conf. on Intelligent Sensors, Sensor Networks and Information, pp. 577 – 580, Melbourne, Australia, Dec. 2004.

    下載圖示
    QR CODE