研究生: |
林原甲 |
---|---|
論文名稱: |
2,6-二甲基苯胺及氘取代物之離子特性研究 |
指導教授: |
曾文碧
Tzeng, Wen-Bih 林震煌 Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 二甲基苯胺 、氘取代物 、質量解析臨界游離光譜術 |
英文關鍵詞: | MATI, 2,6-dimethylaniline |
論文種類: | 學術論文 |
相關次數: | 點閱:253 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們應用高解析度共振雙光子游離與質量解析臨界游離光譜術(MATI)來探討2,6二甲基苯胺與2,6二甲基苯胺之氘取代物的分子特性,精準地量測游離能,並記錄這些分子的D0離子基態的振動光譜。
由實驗得知2,6-二甲基苯胺與2,6-二甲基苯胺-NHD、2,6-二甲基苯胺-ND2的游離能分別為59816 5 cm-1、 59796 5 cm-1 和59780 5 cm-1。
從光譜的分析中,可以證明在2,6-二甲基苯胺的共振二光子游離程序中,當分子由激態躍遷至第一電子激發態時,電子躍遷較傾向於電子雲附近,而由第一電子激發態躍遷至離子態時,主要是二甲基苯胺上氮原子未共用電子對,其中的一個電子被游離,形成了離子。並且與先前實驗室發表之數據作比較,提供最新的取代基特性與氘取代物對分子的游離能以及振動模式造成之影響,而量子化學ab initio及密度泛函數的理論計算亦支持實驗所觀察到的結果。
Two-color resonant two-photon mass analyzed threshold ionization (MATI) spectroscopy was used to record the threshold ion spectra of deuterium-substituted isotopomers of 2,6-dimethylaniline. The respective adiabatic ionization energies of 2,6-dimethylaniline, 2,6-dimethylaniline -NHD, and 2,6-dimethylaniline-ND2 were determined to be 59816, 59796, and 59780 cm-1 with an uncertainty of about 5 cm-1. Analyses on the shifts in the electronic transition and ionization energies prove that the S1 ← S0 transition mainly occurs around the aromatic ring whereas the transition from the neutral S1 to the cationic state corresponds to the removal of one of the lone-pair electrons of nitrogen. The present results provide the first experimental evidence for the site-specific electronic transition in 2,6-dimethylaniline as well as the isotope effects on the vibrations of the 2,6-dimethylaniline cation. These findings are well supported by ab initio and density functional calculations.
[1] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
[2] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
[3] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A. 106 (2002) 7690.
[4] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
[5] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
[6] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
[7] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
[8] D.E. Powers, J.B. Hopkins, R.E. Smally, J. Chem. Phys. 72 (1980) 5721.
[9] E.W. Schlag, Zeke Spectroscopy, Cambridge University Press, Cambridge, U.K, (1998)
[10] The NIST Chemistry Webbook, http://webbook.nist.gov/, and references therein.
[11] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759.
[12] J.L. Lin, K.C. Lin, W.B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
[13] W.B. Tzeng, J.L. Lin, J. Phys. Chem. A 103 (1999) 8612.
[14] J.L. Lin, K.C. Lin, W.B. Tzeng, J. Phys. Chem. A. 106 (2002) 6462.
[15] S.C. Yang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 362 (2002) 19.
[16] Y. Xie, H.W. Su, W.B. Tzeng, Chem. Phys. Lett. 304 (2004) 182.
[17] Y. Xie, J.L. Lin, W.B. Tzeng, Chem. Phys. 305 (2004) 285.
[18] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
[19] J. Lin, W.B. Tzeng, Trends in Appl. Spectrosc. 5 (2004) 71.
[20] E.M. Holt, Inorganica Chimica Acta 240 (1995) 559.
[21] M.M. Marques, Chem. Res. Toxicol. 14 (2001) 165.
[22] J.M. Strong, Drug Metab. Dispos. 24 (1996) 1167.
[23] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
[24] D.W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
[25] M.I. Al-Joboury, D.W. Turner, J. Chem. Soc. (1963) 5141.
[26] G.C. King, A.J. Yencha and M.C.A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
[27] K. Muller-Dethlefs, M. Sander, E.W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
[28] L.A. Chewter, M. Sander, K. Muller-Dethlefs, E.W. Schlag, J. Chem. Phys. 86 (1987) 4737.
[29] E.W. Schlag, ZEKE Spectroscopy, Cambridge University Press, Cambridge, (1998).
[30] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
[31] J.L. Lin, K. Narayanan, W.B. Tzeng, J. Chem. Soc. Faraday Trans. 94 (1998) 2913.
[32] J.L. Lin and W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
[33] J.P. Maier, D.W. Turner, J. Chem. Soc. Faraday Trans. 2, 69 (1973) 521.
[34] M. Schmitt, U. Henrichs, H. Mulller, K. Kleinermanns, J. Chem. Phys. 103 (1995) 9918.
[35] R.J. Bouwens, J.A. Hammerschmidt, M.M. Grzeskowiak, T.A. Stegink, P.M. Yorba, W.F. Polik, J. Chem. Phys. 104 (1996) 460.
[36] A.M. Ellis, E.S.J. Robles, T.A. Miller, Chem. Phys. Lett. 201 (1993) 132.
[37] P.M. Johnson, E.C. Otis, Annu. Rev. Phys. Chem. 32 (1981) 139.
[38] U. Boesl, H.J. Neusser, E.W. Schlag, Chem. Phys. 55 (1981) 193.
[39] H. Su, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 86.
[40] M.A. Smith, J.W. Hager, S.C. Wallace, J. Chem. Phys. 80 (1984) 3097.
[41] M.A. Duncan, T.G. Deltz, R.E. Smalley, J. Chem. Phys. 75 (1981) 2118.
[42] K. Kimura, J.E. Spectrosc. Relat. Phenom. 100 (1999) 273.
[43] L. Santos, E. Martinez, B. Ballesteros, J. Snchez, Spectrochim. Acta A 56 (2000) 1905
[44] S. Yan, L.H. Spangler, J. Chem. Phys. 96 (1992) 4106.
[45] X.Q. Tan, D.W. Pratt, J. Chem. Phys. 100 (1994) 7061.
[46] H. Ikoma, K. Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
[47] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520.
[48] M.C.R. Cockett, Chem. Soc. Rev. 34 (2005) 935.
[49] F. Merkt, Annu. Rev. Phys. Chem., 48 (1997) 675.
[50] W.C. Wiley, I.H. Mclaren, Rev. Sci. Instrum. 26 (1955) 1150.
[51] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever.
[52] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople. GAUSSIAN 03, Revision C.02, Gaussian, Inc., Pittsburgh PA, (2003).
[53] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
[54] L. Yuan, C. Li, J.L. Lin, S.C. Yang, and W.B. Tzeng, Chem. Phys. 323 (2006) 429.
[55] T. Vondrak, S.I. Sato, K. Kimura, J. Phys. Chem. A. 101 (1997) 2384.
[56] W.B. Tzeng, K. Narayanan, K.C. Shieh, and C.C. Tung, J. Mol. Struct. 428 (1998) 231.
[57] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, and C.C. Tung, J. Chem. Soc. Faraday Trans. 93 (1997) 2981.
[58] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, and C.C. Tung, Spectrochim. Acta A. 53 (1997) 2595.
[59] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
[60] J. Huang, J.L. Lin, and W.B. Tzeng, Spectrochim. Acta A. 67 (2007) 989.
[61] J.L. Lin, Y.C. Li, and W.B. Tzeng, Chem. Phys. 334 (2007) 189.
[62] J. Huang, J.L. Lin, and W.B. Tzeng, Chem. Phys. Lett. 422 (2006) 271.
[63] L. Yuan, C. Li, J.L. Lin, S.C. Yang, and W.B Tzeng, Chem. Phys. 323 (2006) 429.
[64] C. Li, S.C. Yang, and W.B. Tzeng, Chem. Phys. Lett. 421 (2006) 77.
[65] L. Yuan, C. Li, W.B. Tzeng, J. Phys. Chem. A. 109 (2005) 9481.
[66] J. Huang, C. Li, W.B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
[67] C. Li, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 506.
[68] H. Su, M. Pradhan, and W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 6.
[69] C. Li, H. Su, and W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99.
[70] M. Pradhan, C.Y. Li, J.L. Lin, and W.B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
[71] C.Y. Li, J.L. Lin, and W.B. Tzeng, J. Chem. Phys. 122 (2005) 044311.
[72] J.L. Lin, S. Zhang, and W.B. Tzeng, J. Chem. Phys. 120 (2004) 50.
[73] J.L. Lin and W.B. Tzeng, Chem. Phys. Lett. 377 (2003) 620.
[74] Y.J. Bae, M.S. Kim,Chem. Phys. Chem. 9 (2009) 1709.
[75] X. Tong, J. Cerny, K. Muller-Dethlefs, and C.E.H. Dessent, J. Phys. Chem. A. 112 (2008) 5866.
[76] M. Lee, Y.J. Bae, M.S. Kim, J. Chem. Phys. 128 (2008) 044310.
[77] M. Riese, Z. Altug, J. Grotemeyer, Phys. Chem. Chem. Phys. 8 (2006) 4441.
[78] M. Riese, J. Grotemeyer, Anal. and Bioanal. Chem. 386 (2006) 59.
[79] A.G. Suits, J.W. Hepburn, Ann. Rev. Phys. Chem. 57(2006) 431.
[80] X. Tong, M.S. Ford, C.E.H. Dessent, et al. J. Chem. Phys. 24 (2003) 12908.