簡易檢索 / 詳目顯示

研究生: 林容諄
Lin, Rung-Juen
論文名稱: 蠶蛾科之起源、演化及其生物學研究
The Biology, Evolution and Origin of Silkworms and their Relatives (Lepidoptera: Bombycidae)
指導教授: 徐堉峰
Hsu, Yu-Feng
口試委員: Michael F. Braby
Michael F. Braby
陳韋仁
Chen, Wei-Jen
李壽先
Li, Shou-Hsien
林思民
Lin, Si-Min
徐堉峰
Hsu, Yu-Feng
口試日期: 2022/01/12
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 211
中文關鍵詞: 蠶蛾科親緣關係系統生物學生物地理特徵演化
英文關鍵詞: Bombycidae, character evolution, historical biogeography, phylogeny, systematics
研究方法: 實驗設計法比較研究田野調查法
DOI URL: http://doi.org/10.6345/NTNU202200311
論文種類: 學術論文
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馴化已久的家蠶(Bombyx mori)(Lepidoptera: Bombycidae),是鱗翅目的模式物種之一,為第一個完成全基因組序列定序(genome sequence)的鱗翅目物種。由於家蠶結繭的蠶絲及蠶絲的副產品擁有重要的經濟價值,根據文獻記載早在5000年前就開始被人類馴養利用,目前有超過1000種以上的品系。近年結合分子數據證據透過馴化品系之間的基因組關係研究顯示,家蠶(B. mori)是由野蠶(B. mandarina)所馴養而來,與歷史文獻紀錄吻合,透過絲路分別傳往世界各地。儘管家蠶研究深入,然而蠶蛾科內其他與蠶蛾近緣物種的研究資料十分缺稀,例如多數的蠶蛾科物種沒有完整的生活史資料,蠶蛾科內不同屬之間的關係尚未釐清,幼蟲取食桑科(Moraceae)桑屬(Morus)或榕屬(Ficus)植物的演化情形未知,且蠶蛾科的分布起源仍然充滿疑問。本研究取樣所有文獻記錄地區之蠶蛾科樣本,囊括亞洲、南美洲、非洲、澳洲及東南亞地區,研究結果簡述如下:1) 採集、飼養蠶蛾科物種、記錄其生活史資料包含寄主植物、卵的排列方式、初齡幼蟲之原生毛序、繭的結構與色型等;2) 以6個基因(1個粒線體基因與5個核基因)序列資料建構可靠的蠶蛾科親緣關係,結果顯示蠶蛾科可分為南美洲新世界亞科Epiinae與亞洲古北區舊世界亞科Bombycinae兩個亞科,屬級關係中除Bivincula與Gunda為併系群,其餘屬為單系群;3) 根據幼蟲的寄主植物記錄與分子數據建構的親緣關係樹進行特徵演化模擬,推測利用桑科榕屬做為寄主植物為祖徵,而利用桑科桑屬植物則為較晚近演化出來的結果;4) 利用新建構之分子親緣關係樹結合化石、地質年代與分子鐘估算物種分化時間,重建蠶蛾科之生物地理歷史事件,估算蠶蛾科約在6千1百萬年前於岡瓦那大陸(Gondwana)出現,約在5千1百萬年前分化為新世界與舊世界兩大亞科;分析顯示,Bombycinae的祖先約在4千6百萬年前經由一次澳洲至亞洲的擴散事件(dispersal)形成現今物種在東南亞及亞洲的分布;而後又再經由一次的擴散事件,從亞洲擴散至非洲地區。

    The silkeworm, Bombyx mori (Lepidoptera: Bombycidae) is an important model species, which is well studied, representing the first species in which the whole genome sequence was completed in the order of Lepidoptera. According to previous studies, there are over 1,000 inbred strains of silkworms which were domesticated at least 5,000 years ago for producing valuable silk. Recently, it was demonstrated that silkworms were domesticated from wild silkworm B. mandarina by resequencing 40 genomes of domesticated and wild silkworms, and that economically valuable silkworms were spread worldwide through the Silk Road. Although there have been many studies on silkworm, there is a lack of information on other species in Bombycidae, such as life histories, evolutionary relationships, the evolution of life history characters and their hostplants, and their origin. This study investigates the morphology, biology, character evolution, origin and historical biogeography of silkworms and their relatives in Asia, East-Palearctic, Australia, South America, and Africa. The main findings and results are summarized as follows: 1) comparative illustrations of the immature stages, morphology, male, and female genitalia are provided for 13 species in 11 genera; 2) the well-supported phylogeny based on a six gene data set indicates the family Bombycidae comprises two subfamilies, Epiinae and Bombycinae; most of genera were monophyletic, although Bivincula and Gunda were polyphyletic; 3) ancestral trait reconstruction suggests Moraceae is the ancestral host plant family, with feeding on the genus Ficus likely the most recent common ancestor; 4) reconstruction of the biogeographical history of Bombycidae suggests an origin in Southern Gondwana (Australia–Antarctica–South America) during the Paleocene (c. 61 Mya); the family then split vicariantly into its two subfamilies in the Eocene (c. 51 Mya) as follows: Bombycinae (Australia) + Epiinae (South America). Asia was subsequently colonized by dispersal out of Australia (c. 46 Mya). The other continents and land masses in Africa and East-Palaearctic were later colonized by dispersal or range expansion from Asia.

    Acknowledgements i Abstract ii List of Tables vi List of Figures vii Chapter 1: General Introduction 1 Silk and silkworm 1 Bombycidae 1 Chapter 2: Systematics and Biology of Bombycidae 6 Introduction 6 Systematics of Bombycidae 6 Checklist of Bombycidae of the World 10 Checklist of Bombycidae of Taiwan 10 Materials and Methods 12 Taxon sampling and field observations 12 Laboratory rearing 13 Molecular data 14 Sequence alignment and phylogenetic analysis 15 Results 16 Molecular phylogeny 16 Immature stage biology 18 Discussion 39 Chapter 3: Character Evolution in Bombycidae 46 Introduction 46 Host plants 47 Egg-laying behavior 49 Larval color pattern 50 Cocoons 51 Materials and Methods 53 Taxon sampling and data collection 53 Molecular work 53 Life history characters 54 Character evolution 56 Phylogenetic signal 57 Results 58 Host plants 59 Egg cluster size and deposition pattern 59 Larval color pattern 60 Cocoon color, structure and pupation sites 60 Sensitivity of the phylogenetic signal test 61 Discussion 63 Host plant shifts 63 Egg cluster size and orientation 64 Larval color pattern 66 Cocoon color, structure and pupation sites 68 Chapter 4: Historical Biogeography of Bombycidae 70 Introduction 70 Materials and Methods 74 Taxon sampling 74 DNA extraction, amplification, and sequencing 75 Phylogenetic analyses 75 Divergence times 76 Biogeographic analyses 77 Results 77 Phylogenetic relationships 77 Divergence times and molecular dating 78 Biogeographic reconstruction 79 Discussion 80 Chapter 5: Conclusion 86 Summary 86 Limitations of available data 88 References 90 Tables 104 Figures 120 Appendixes 186

    Armstrong, K. E., Stone, G. N., Nicholls, J. A., Valderrama Escallón, E., Anderberg, A. A., Smedmark, J., …Richardson, J. E. (2014). Patterns of diversification amongst tropical regions compared: A case study in Sapotaceae. Frontiers in Genetics, 5(362). https://doi.org/10.3389/fgene.2014.00362
    Baldwin, S. L., Fitzgerald, P. G. & Webb, L. E. (2012). Tectonics of the New Guinea Region. Annual Review of Earth and Planetary Sciences, 40(1), 495–520. https://doi.org/10.1146/annurev-earth-040809-152540
    Barlow, H. S. (1982). An introduction to the moths of South East Asia. An introduction to the moths of South East Asia. Kuala Lumpur, Malaysia: Malayan Nature Society.
    Becerra, J. X. (1997). Insects on plants: macroevolutionary chemical trends in host use. Science, 276(5310), 253–256. https://doi.org/10.1126/science.276.5310.253
    Bernays, E. A. & Chapman, R. E. (1994). Patterns of host-plant use. In Host-Plant Selection by Phytophagous Insects (pp. 4–13). Boston, MA: Springer US. https://doi.org/10.1007/978-0-585-30455-7_2
    Bernays, E. A. & Janzen, D. H. (1988). Saturniid and sphingid caterpillars: two ways to eat leaves. Ecology, 69(4), 1153–1160. https://doi.org/https://doi.org/10.2307/1941269
    Bernays, E. A., Jarzembowski, E. A. & Malcolm, S. B. (1991). Evolution of insect morphology in relation to plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 333(1267), 257–264. https://doi.org/10.1098/rstb.1991.0075
    Borges, R., Machado, J. P., Gomes, C., Rocha, A. P. & Antunes, A. (2019). Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics, 35(11), 1862–1869. https://doi.org/10.1093/bioinformatics/bty800
    Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., …Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4). https://doi.org/10.1371/journal.pcbi.1006650
    Breeschoten, T., Doorenweerd, C., Tarasov, S. & Vogler, A. P. (2016). Phylogenetics and biogeography of the dung beetle genus Onthophagus inferred from mitochondrial genomes. Molecular Phylogenetics and Evolution, 105, 86–95. https://doi.org/https://doi.org/10.1016/j.ympev.2016.08.016
    Bruzzese, D. J., Wagner, D. L., Harrison, T., Jogesh, T., Overson, R. P., Wickett, N. J., …Skogen, K. A. (2019). Phylogeny, host use, and diversification in the moth family Momphidae (Lepidoptera: Gelechioidea). PLOS ONE, 14(6), e0207833. https://doi.org/10.1371/journal.pone.0207833
    Campos, E. O., Bradshaw, H. D. & Daniel, T. L. (2015). Shape matters: corolla curvature improves nectar discovery in the hawkmoth Manduca sexta. Functional Ecology, 29(4), 462–468. https://doi.org/10.1111/1365-2435.12378
    Christenhusz, M. J. M. & Chase, M. W. (2012). Biogeographical patterns of plants in the Neotropics – dispersal rather than plate tectonics is most explanatory. Botanical Journal of the Linnean Society, 171(1), 277–286. https://doi.org/10.1111/j.1095-8339.2012.01301.x
    Common, I. F. B. & Edwards, E. D. (1991). The early stages of Gastridiota adoxima (Turner) (Lepidoptera: Bombycoidea) and its family placement. Australian Journal of Entomology, 30(2), 187–192. https://doi.org/https://doi.org/10.1111/j.1440-6055.1991.tb00410.x
    Conti, E., Eriksson, T., Schönenberger, J., Sytsma, K. J. & Baum, D. A. (2002). Early tertiary out-of-India dispersal of crypteroniaceae: evidence from phylogeny and molecular dating. Evolution, 56(10), 1931–1942. https://doi.org/10.1111/j.0014-3820.2002.tb00119.x
    Couvreur, T. L. P., Pirie, M. D., Chatrou, L. W., Saunders, R. M. K., Su, Y. C. F., Richardson, J. E. & Erkens, R. H. J. (2011). Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. Journal of Biogeography, 38(4), 664–680. https://doi.org/10.1111/j.1365-2699.2010.02434.x
    Cox, C. B. & Moore, P. D. (1993). Biogeography: an ecological and evolutionary approach. 5th edition. Biogeography: an ecological and evolutionary approach. 5th edition. Oxford: Blackwell Scientific. https://doi.org/10.1080/10635150500541581
    Crisp, M. D., Trewick, S. A. & Cook, L. G. (2011). Hypothesis testing in biogeography. Trends in Ecology & Evolution, 26(2), 66–72. https://doi.org/https://doi.org/10.1016/j.tree.2010.11.005
    Daimon, T., Hirayama, C., Kanai, M., Ruike, Y., Meng, Y., Kosegawa, E., …Shimada, T. (2010). The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Proceedings of the National Academy of Sciences, 107(25), 11471–11476.
    Daimon, T., Yago, M., Hsu, Y.-F., Fujii, T., Nakajima, Y., Kokusho, R., …Tu, J. (2012). Molecular phylogeny, laboratory rearing, and karyotype of the bombycid moth, Trilocha varians. Journal of Insect Science, 12(1).
    Debastiani, V. J. & Duarte, L. da S. (2017). Evolutionary Models and Phylogenetic Signal Assessment via Mantel Test. Evolutionary Biology, 44(1), 135–143. https://doi.org/10.1007/s11692-016-9396-1
    Ehrlich, P. R. & Raven, P. H. (1965). Butterflies and plants: a study in coevolution. Evolution, 18(4), 586–608.
    Espeland, M., Hall, J. P. W., DeVries, P. J., Lees, D. C., Cornwall, M., Hsu, Y.-F., …Pierce, N. E. (2015). Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 93, 296–306. https://doi.org/10.1016/j.ympev.2015.08.006
    Farrell, B. D., Dussourd, D. E. & Mitter, C. (1991). Escalation of plant defense: do latex and resin canals spur plant diversification? The American Naturalist, 138(4), 881–900.
    Forbes, A. A., Devine, S. N., Hippee, A. C., Tvedte, E. S., Ward, A. K. G., Widmayer, H. A. & Wilson, C. J. (2017). Revisiting the particular role of host shifts in initiating insect speciation. Evolution, 71(5), 1126–1137.
    Freitas, A. V. L. & Brown Jr., K. S. (2004). Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology, 53(3), 363–383. https://doi.org/10.1080/10635150490445670
    Futuyma, D. J. & Agrawal, A. A. (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences, 106(43), 18054–18061.
    Gaston, K. J. & Reavey, D. (1989). Patterns in the life histories and feeding strategies of British macrolepidoptera. Biological Journal of the Linnean Society, 37(4), 367–381. https://doi.org/10.1111/j.1095-8312.1989.tb01912.x
    Gentry, A., Clutton-Brock, J. & Groves, C. P. (2004). The naming of wild animal species and their domestic derivatives. Journal of Archaeological Science, 31(5), 645–651. https://doi.org/10.1016/j.jas.2003.10.006
    Goldsmith, M. R., Shimada, T. & Abe, H. (2005). The genetics and genomics of the silkworm, Bombyx mori. Annual Review of Entomology, 50(1), 71–100. https://doi.org/10.1146/annurev.ento.50.071803.130456
    Gong, Y., Li, L., Gong, D., Yin, H. & Zhang, J. (2016). Biomolecular evidence of silk from 8,500 years ago. PLOS ONE, 11(12), e0168042. https://doi.org/10.1371/journal.pone.0168042
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. (2012). Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebrate Survival Journal, 9(1), 7–34.
    Guerra, P. A., Lawson, L. P., Gatto, L. J., Albright, M. E. & Smith, S. J. (2020). Architectural evolution in cocoons spun by Hyalophora (Lepidoptera; Saturniidae) silk moth species. Scientific Reports, 10(1), 5615. https://doi.org/10.1038/s41598-020-62547-1
    Guerra, P. A. & Reppert, S. M. (2017). Dimorphic cocoons of the cecropia moth (Hyalophora cecropia): Morphological, behavioral, and biophysical differences. PLOS ONE, 12(3), e0174023. https://doi.org/10.1371/journal.pone.0174023
    Hamilton, C. A., St Laurent, R. A., Dexter, K., Kitching, I. J., Breinholt, J. W., Zwick, A., …Kawahara, A. Y. (2019). Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives. BMC Evolutionary Biology, 19(1), 182. https://doi.org/10.1186/s12862-019-1505-1
    Harzhauser, M., Kroh, A., Mandic, O., Piller, W. E., Göhlich, U., Reuter, M. & Berning, B. (2007). Biogeographic responses to geodynamics: A key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger - A Journal of Comparative Zoology, 246(4), 241–256. https://doi.org/https://doi.org/10.1016/j.jcz.2007.05.001
    He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., …Li, D. (2013). Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 4, 2445.
    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14812 LP – 14817. https://doi.org/10.1073/pnas.0406166101
    Hinton, H. E. (1946). On the homology and nomenclature of the setae of lepidopterous larvae, with some notes on the phylogeny of the Lepidoptera. Transactions of the Royal Entomological Society of London, 97(1), 1–37. https://doi.org/https://doi.org/10.1111/j.1365-2311.1946.tb00372.x
    Ho, L. si T. & Ané, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63(3), 397–408. https://doi.org/10.1093/sysbio/syu005
    Holloway, J. D., Bradley, J. D. & Carter, D. J. (1987). CIE Guides to insects of importance to man. I. Lepidoptera. CAB International.
    Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. (2003). Stochastic Mapping of Morphological Characters. Systematic Biology, 52(2), 131–158. https://doi.org/10.1080/10635150390192780
    Hutton, T. (1864). XIV.: On the reversion and restoration of the silkworm (Part II.); with distinctive characters of eighteen species of silk-producing Bombycidae. Transactions of the Royal Entomological Society of London, 12(4), 295–331. https://doi.org/10.1111/j.1365-2311.1864.tb00108.x
    Janz, N. (2011). Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annual Review of Ecology, Evolution, and Systematics, 42, 71–89.
    Jin, H., Seki, T., Yamaguchi, J. & Fujiwara, H. (2019). Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless , abdominal-A , and Abdominal-B. Science Advances, 5(4), eaav7569. https://doi.org/10.1126/sciadv.aav7569
    Jønsson, K. A., Fabre, P.-H., Ricklefs, R. E. & Fjeldså, J. (2011). Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proceedings of the National Academy of Sciences, 108(6), 2328–2333. https://doi.org/10.1073/pnas.1018956108
    Kamilar, J. M. & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618), 20120341. https://doi.org/10.1098/rstb.2012.0341
    Kawahara, A. Y., Plotkin, D., Espeland, M., Meusemann, K., Toussaint, E. F. A., Donath, A., …Breinholt, J. W. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences, 116(45), 22657–22663. https://doi.org/10.1073/pnas.1907847116
    Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.
    Kingsolver, J. G. (2007). Variation in growth and instar number in field and laboratory Manduca sexta. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 977–981. https://doi.org/10.1098/rspb.2006.0036
    Kitching, I. J. (1984). The use of larval chaetotaxy in butterfly systematics, with special reference to the Danaini (Lepidoptera: Nymphalidae). Systematic Entomology, 9(1), 49–61. https://doi.org/https://doi.org/10.1111/j.1365-3113.1984.tb00500.x
    Kitching, I. J., Rougerie, R., Zwick, A., Hamilton, C. A., St Laurent, R. A., Naumann, S., …Kawahara, A. Y. (2018). A global checklist of the Bombycoidea (Insecta: Lepidoptera). Biodiversity Data Journal, 6, e22236. Retrieved from https://doi.org/10.3897/BDJ.6.e22236
    Kodandaramaiah, U., Braby, M. F., Grund, R., Müller, C. J. & Wahlberg, N. (2018). Phylogenetic relationships, biogeography and diversification of Coenonymphina butterflies (Nymphalidae: Satyrinae): intercontinental dispersal of a southern Gondwanan group? Systematic Entomology, 43(4), 798–809. https://doi.org/10.1111/syen.12303
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260
    Lawton, J. H. (1983). Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28(1), 23–39.
    Lemaire, C. & Minet, J. (1999). The Bombycoidea and their relatives. In N. P.Kristensen (Ed.), Lepidoptera, Moths and Butterflies (pp. 321–354). Berlin and New York: Walter de Gruyter.
    Letsch, H., Balke, M., Toussaint, E. F. A. & Riedel, A. (2020). Historical biogeography of the hyperdiverse hidden snout weevils (Coleoptera, Curculionidae, Cryptorhynchinae). Systematic Entomology, 45(2), 312–326. https://doi.org/10.1111/syen.12396
    Li, P.-S., Thomas, D. C. & Saunders, R. M. K. (2017). Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia. BMC Evolutionary Biology, 17(1), 188. https://doi.org/10.1186/s12862-017-1038-4
    Lin, C.-S. (2005). Immature stages of four Bombycidae species of Taiwan. Collection and Research, 18, 25–31.
    Lin, R.-J., Braby, M. F. & Hsu, Y.-F. (2019). The immature stages, biology, and phylogenetic relationships of Rotunda rotundapex (Lepidoptera: Bombycidae). Journal of Insect Science, 19(2). https://doi.org/10.1093/jisesa/iez025
    Lomolino, M.V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. (2010). Biogeography. Sunderland, Massachusetts: Sinauer Associates Inc (4th ed.). Sunderland, Mass: Sinauer Associates, Inc.
    Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003. https://doi.org/https://doi.org/10.1111/j.1461-0248.2008.01229.x
    Luebert, F., Couvreur, T. L. P., Gottschling, M., Hilger, H. H., Miller, J. S. & Weigend, M. (2017). Historical biogeography of Boraginales: West Gondwanan vicariance followed by long-distance dispersal? Journal of Biogeography, 44(1), 158–169. https://doi.org/10.1111/jbi.12841
    Martín-Bravo, S. & Daniel, T. F. (2016). Molecular evidence supports ancient long-distance dispersal for the amphi-Atlantic disjunction in the giant yellow shrimp plant (Barleria oenotheroides). American Journal of Botany, 103(6), 1103–1116. https://doi.org/10.3732/ajb.1600083
    Matsubayashi, K. W., Ohshima, I. & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata, 134(1), 1–27.
    Matthews, K. J., Williams, S. E., Whittaker, J. M., Müller, R. D., Seton, M. & Clarke, G. L. (2015). Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth-Science Reviews, 140, 72–107. https://doi.org/10.1016/j.earscirev.2014.10.008
    Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63(6), 951–970. https://doi.org/10.1093/sysbio/syu056
    McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49(3), 271–300. Retrieved from https://doi.org/10.1071/BT00023
    Medina, I., Vega-Trejo, R., Wallenius, T., Symonds, M. R. E. & Stuart-Fox, D. (2020). From cryptic to colorful: Evolutionary decoupling of larval and adult color in butterflies. Evolution Letters, 4(1), 34–43. https://doi.org/https://doi.org/10.1002/evl3.149
    Merilaita, S. & Lind, J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society B: Biological Sciences, 272(1563), 665–670. https://doi.org/10.1098/rspb.2004.3000
    Michalak, I., Zhang, L.-B. & Renner, S. S. (2010). Trans-Atlantic, trans-Pacific and trans-Indian ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. Journal of Biogeography, 37(7), 1214–1226. https://doi.org/10.1111/j.1365-2699.2010.02306.x
    Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceeding of the Gateway Computing Environments Workshop (GCE) (pp. 1–8). New Orleans, LA: IEEE. https://doi.org/10.1109/GCE.2010.5676129
    Mitter, C., Farrell, B. & Wiegmann, B. (1988). The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? The American Naturalist, 132(1), 107–128.
    Moyle, R. G., Oliveros, C. H., Andersen, M. J., Hosner, P. A., Benz, B. W., Manthey, J. D., …Faircloth, B. C. (2016). Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nature Communications, 7(1), 12709. https://doi.org/10.1038/ncomms12709
    Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K. & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756. https://doi.org/https://doi.org/10.1111/j.2041-210X.2012.00196.x
    Navasero, M.V, Navasero, M. M., Roxas, M. C. & Calumpang, S. M. F. (2013). Occurrence of the moraceae-feeding bombycid, Trilocha varians (Walker)(Bombycidae, Lepidoptera) as pest of jackfruit and some ornamental species of Ficus in the Philippines. Journal of ISSAAS (International Society for Southeast Asian Agricultural Sciences), 19(2), 41–48.
    Nielsen, M. E. & Mappes, J. (2020). Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behavioral Ecology, 31(4), 1031–1039. https://doi.org/10.1093/beheco/araa048
    Pederneiras, L. C., Gaglioti, A. L., Romaniuc-Neto, S. & Mansano, V. de F. (2018). The role of biogeographical barriers and bridges in determining divergent lineages in Ficus (Moraceae). Botanical Journal of the Linnean Society, 187(4), 594–613. https://doi.org/10.1093/botlinnean/boy036
    Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae). Zoologica Scripta, 39(3), 243–258.
    Powell, J. A. & DeBenedictis, J. A. (1995). Biological relationships: Host tree preferences and isolation by pheromones among allopatric and sympatric populations of western Choristoneura. University California Publications in Entomology, 115, 21–68.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904.
    Raven, P. H. & Axelrod, D. I. (1974). Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden, 61(3), 539–673. https://doi.org/10.2307/2395021
    Reddy, N. & Yang, Y. (2010). Structure and properties of cocoons and silk fibers produced by Hyalophora cecropia. Journal of Materials Science, 45(16), 4414–4421. https://doi.org/10.1007/s10853-010-4523-3
    Ree, R. H. & Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 45(4), 741–749. https://doi.org/10.1111/jbi.13173
    Regier, J. C., Cook, C. P., Mitter, C. & Hussey, A. (2008). A phylogenetic study of the ‘bombycoid complex’(Lepidoptera) using five protein‐coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Systematic Entomology, 33(1), 175–189.
    Regier, J. C., Zwick, A., Cummings, M. P., Kawahara, A. Y., Cho, S., Weller, S., …Parr, C. (2009). Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 9(1), 280.
    Renner, S. S., Strijk, J. S., Strasberg, D. & Thébaud, C. (2010). Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long-distance dispersal, but not West Gondwana. Journal of Biogeography, 37(7), 1227–1238. https://doi.org/10.1111/j.1365-2699.2010.02319.x
    Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/https://doi.org/10.1111/j.2041-210X.2011.00169.x
    Richardson, J. E., Chatrou, L. W., Mols, J. B., Erkens, R. H. J. & Pirie, M. D. (2004). Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1450), 1495–1508. https://doi.org/10.1098/rstb.2004.1537
    Ronquist, F., Teslenko, M., Van DerMark, P., Ayres, D. L., Darling, A., Höhna, S., …Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
    Rougerie, R. & Estradel, Y. (2008). Morphology of the preimaginal stages of the African emperor moth Bunaeopsis licharbas (Maassen and Weyding): Phylogenetically informative characters within the Saturniinae (Lepidoptera: Saturniidae). Journal of Morphology, 269(2), 207–232. https://doi.org/https://doi.org/10.1002/jmor.10562
    Rubinoff, D. & Doorenweerd, C. (2020). In and out of America: ecological and species diversity in Holarctic giant silkmoths suggests unusual dispersal, defying the dogma of an Asian origin. Journal of Biogeography, 47(4), 903–914. https://doi.org/10.1111/jbi.13756
    Schuman, M. C. & Baldwin, I. T. (2016). The layers of plant responses to insect herbivores. Annual Review of Entomology, 61(1), 373–394. https://doi.org/10.1146/annurev-ento-010715-023851
    Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., …Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3–4), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    Skelhorn, J., Rowland, H. M. & Ruxton, G. D. (2010). The evolution and ecology of masquerade. Biological Journal of the Linnean Society, 99(1), 1–8. https://doi.org/10.1111/j.1095-8312.2009.01347.x
    Smith, A. B. & Peterson, K. J. (2002). Dating the time of origin of major clades: Molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30, 65–88. https://doi.org/10.1146/annurev.earth.30.091201.140057
    Sohn, J. C., Labandeira, C., Davis, D. & Mitter, C. (2012). An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa (Vol. 132). https://doi.org/10.11646/zootaxa.3286.1.1
    Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
    Stehr, F. W. (1987). Immature Insects. Dubuque, Iowa, USA: Hunt Publishing Company.
    Stevens, M. & Ruxton, G. D. (2011). Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 417–426.
    Strong, D. R., Lawton, J. H. & Southwood, S. R. (1984). Insects on plants. Community patterns and mechanisms. Mass, USA: Blackwell Scientific Publicatons.
    Suzuki, T. N. & Sakurai, R. (2015). Bent posture improves the protective value of bird dropping masquerading by caterpillars. Animal Behaviour, 105, 79–84. https://doi.org/https://doi.org/10.1016/j.anbehav.2015.04.009
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
    Thomas, D. C., Tang, C. C. & Saunders, R. M. K. (2017). Historical biogeography of Goniothalamus and Annonaceae tribe Annoneae: dispersal–vicariance patterns in tropical Asia and intercontinental tropical disjunctions revisited. Journal of Biogeography, 44(12), 2862–2876. https://doi.org/10.1111/jbi.13086
    Toussaint, E. F. A., Bloom, D. & Short, A. E. Z. (2017). Cretaceous West Gondwana vicariance shaped giant water scavenger beetle biogeography. Journal of Biogeography, 44(9), 1952–1965. https://doi.org/10.1111/jbi.12977
    Toussaint, E. F. A., Hendrich, L., Hájek, J., Michat, M. C., Panjaitan, R., Short, A. E. Z. & Balke, M. (2017). Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography. Ecography, 40(4), 500–510. https://doi.org/10.1111/ecog.02195
    Toussaint, E. F. A., Vila, R., Yago, M., Chiba, H., Warren, A. D., Aduse-Poku, K., …Kawahara, A. Y. (2019). Out of the Orient: Post-Tethyan transoceanic and trans-Arabian routes fostered the spread of Baorini skippers in the Afrotropics. Systematic Entomology, 44(4), 926–938. https://doi.org/10.1111/syen.12365
    Toussaint Fls, E. F. A. & Gillett, C. P. D. T. (2017). Rekindling Jeannel’s Gondwanan vision? Phylogenetics and evolution of Carabinae with a focus on Calosoma caterpillar hunter beetles. Biological Journal of the Linnean Society, 123(1), 191–207. https://doi.org/10.1093/biolinnean/blx128
    Turlings, T. C. J. & Erb, M. (2018). Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. Annual Review of Entomology, 63(1), 433–452. https://doi.org/10.1146/annurev-ento-020117-043507
    Vaidya, G., Lohman, D. J. & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
    van Eecke, R. (1929). De Heterocera van Sumatra VI. Zoologische Mededelingen, 12(6), 28–136.
    Verdú, J. R., Galante, E., Lumaret, J.-P. & Cabrero-Sañudo, F. J. (2004). Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae. Systematic Entomology, 29(4), 509–523. https://doi.org/https://doi.org/10.1111/j.0307-6970.2004.00256.x
    Wahlberg, N. & Wheat, C. W. (2008). Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology, 57(2), 231–242.
    Wang, X., Chen, Z., Gu, X., Wang, M., Huang, G. & Zwick, A. (2018). Phylogenetic relationships among Bombycidae sl (Lepidoptera) based on analyses of complete mitochondrial genomes. Systematic Entomology.
    Wang, X., Wang, M., Zolotuhin, V.V., Hirowatari, T., Wu, S. & Huang, G.-H. (2015). The fauna of the family Bombycidae sensu lato (Insecta, Lepidoptera, Bombycoidea) from Mainland China, Taiwan and Hainan Islands. Zootaxa, 3989(1), 1. https://doi.org/10.11646/zootaxa.3989.1.1
    Welch, B. J., Obadi, O. M. & Lampert, E. C. (2017). Effects of carotenoid sequestration on a caterpillar’s cryptic coloration and susceptibility to predation. Entomologia Experimentalis et Applicata, 163(2), 177–183. https://doi.org/https://doi.org/10.1111/eea.12558
    Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F., Underwood, D. & Mitchell-Olds, T. (2007). The genetic basis of a plant–insect coevolutionary key innovation. Proceedings of the National Academy of Sciences, 104(51), 20427–20431.
    Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. (2015). Herbivory increases diversification across insect clades. Nature Communications, 6(1), 8370. https://doi.org/10.1038/ncomms9370
    Xia, Q., Guo, Y., Zhang, Z., Li, D., Xuan, Z., Li, Z., …Li, R. (2009). Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 326(5951), 433–436.
    Zerega, N. J. C., Clement, W. L., Datwyler, S. L. & Weiblen, G. D. (2005). Biogeography and divergence times in the mulberry family (Moraceae). Molecular Phylogenetics and Evolution, 37(2), 402–416. https://doi.org/https://doi.org/10.1016/j.ympev.2005.07.004
    Zhang, Q., Onstein, R. E., Little, S. A. & Sauquet, H. (2019). Estimating divergence times and ancestral breeding systems in Ficus and Moraceae. Annals of Botany, 123(1), 191–204. https://doi.org/10.1093/aob/mcy159
    Zhao, F. (2021). Overview of textile technology in ancient China. In A New Phase of Systematic Development of Scientific Theories in China (pp. 107–130). Singapore: Springer. https://doi.org/10.1007/978-981-15-7844-1_4
    Zolotuhin, V.V. & Dolgunov, V. A. (2018). Five new species of the genus Ernolatia Walker, 1862 (Lepidoptera: Bombycidae) from islands of Malesia. Zootaxa, 4422(3), 411–421. https://doi.org/10.11646/zootaxa.4422.3.7
    Zolotuhin, V.V. & Witt, T. J. (2009). The Bombycidae of Vietnam. Entomofauna, 16, 231–272.
    Zwick, A. (2008). Molecular phylogeny of Anthelidae and other bombycoid taxa (Lepidoptera: Bombycoidea). Systematic Entomology, 33(1), 190–209.
    Zwick, A., Regier, J. C., Mitter, C. & Cummings, M. P. (2011). Increased gene sampling yields robust support for higher‐level clades within Bombycoidea (Lepidoptera). Systematic Entomology, 36(1), 31–43. https://doi.org/10.1111/j.1365-3113.2010.00543.x

    無法下載圖示 電子全文延後公開
    2025/02/06
    QR CODE