簡易檢索 / 詳目顯示

研究生: 黃浩康
Huang, Hao-Kang
論文名稱: 奈米銀島狀薄膜的製備並應用在生物感測器上的研究
Preparation of Plasmonic silver nano-island film and their application in biosensor
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 表面電將共振奈米銀島狀薄膜螢光增強
英文關鍵詞: Surface Plasmon Resonance, nano silver island film, Fluorescence Enhancement
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.001.2019.B05
論文種類: 學術論文
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米金屬材料的局部表面電漿共振(Localized Surface Plasmon Resonance,LSPR)對螢光物質有明顯的螢光增強,由於螢光分子與具有LSPR的表面有交互作用(Interaction),此現象稱為金屬螢光增強(Metal-Enhancement Fluorescence,MEF)。
    本研究以無電鍍的方法製備銀島狀薄膜,此方法具有高度的便利性且快速,對環境無害且友善。另外此方法藉由改變整體銀的覆蓋率與改變氨水的量來改善表面形貌,多數條件的島狀銀的粒徑/間隙比大於2以上。銀的散射效率對於放射波長位在進紅外光的IR800有顯著的螢光增強,由於銀的LSPE peak與IR800放射波長有重疊,另外較窄的間隙使局部的電磁場更為增強,由於兩奈米粒子間的耦合(Coupling)現象。
    本材料與對照組比較有明顯的螢光增強,提升了系統的偵測極限,當銀的濃度為500uM時,對IR800的螢光增強達到最大值,偵測到的最大值接近500倍,平均螢光增強接近350倍。

    Nano metal materials has significantly fluorescence enhancement
    due to its localized surface plasmon resonance (LSPR) characteristic. The fluorophore interaction with plasmonic substrates were investigated by many researcher, this phenomenon called metal-enhancement fluorescen-ce (MEF). In this study, preparation of silver nano-island films (SIF) by electroless plating, this is a convenience and fast method that is environ-ment friendly and non-toxic. In addition, a strong MEF activity attributed to surface morphology so that this study change concentration of the silver and mole number of the ammonia for improvement surface morphology. In our experiment, most of the conditions of SIFs has outstanding size/gap ratio, most of them large than 2. Silver is a commonly used material because its SPR is typically in the visible region.
    Plasmonic peaks of SIF overlaps with the fluorescence emission wavelength of IR800.This material can effective increase fluorescence intensity and improve system detection limit. The enhancement factor reach close to 500 fold and average enhancement factor close to 350 fold.

    謝誌 IV 摘要 V ABSTRACT VI 第一章 緒論 1 1-1 ELISA的歷史與發展 1 1-2 ELISA的基本原理與方法 3 1-3 無電鍍銀的基本方法與原理 6 第二章 文獻回顧與研究動機 8 2-1 金屬奈米材料表面電漿共振現象 8 2-2 金屬增強螢光 11 2-2-1 金屬增強螢光理論 11 2-2-2 金屬增強螢光的方法 16 2-2-3 金屬螢光增強的應用 18 2-3 研究目的與動機 29 第三章 實驗設備與步驟 30 3-1 實驗藥品 30 3-2 實驗儀器設備介紹 32 3-2-1 紫外光/可見光/進紅外光光譜儀 32 3-2-2 掃描式電子顯微鏡 33 3-2-3 微陣列螢光掃描儀 34 3-2-4 微陣列點陣平台 36 3-2-5 迴轉式恆溫震盪器 37 3-2-6 玻片離心機 37 3-2-7 16孔盤成長室 38 3-3 實驗步驟 39 3-3-1 奈米銀島狀薄膜的製備 39 3-3-2 奈米銀島狀薄膜之表面修飾 40 3-3-3 奈米銀島狀薄膜修飾上螢光物標記之分子 41 第四章 結果與討論 42 4-1 無電鍍銀的方法與螢光染料的選擇 42 4-1-1 無電鍍奈米銀島狀薄膜實驗設計 42 4-1-2 實驗基材與染料之選擇 43 4-2 奈米銀島狀薄膜的表面形貌與LSPR性質 45 4-2-1 不同銀的濃度對奈米銀島狀薄膜之影響 45 4-2-2 不同莫耳數之AgNO3:NH3對表面型態之影響 48 4-3 奈米銀島狀薄膜的MEF應用 51 4-3-1 表面修飾以螢光物標記的不同物種 51 4-3-2 不同銀濃度的螢光增強測試 51 4-3-3 不同AgNO3:NH3的螢光增強測試 54 4-3-4 奈米銀島狀薄膜在ELISA上的應用 56 第五章 結論與未來展望 59 參考文獻 60

    1. Lequin, R. M., Enzyme immunoassay (EIA) / enzyme-linked immunosorbent assay (ELISA). Clin Chem 2005, 51 (12), 2415-8.
    2. 創世紀生技有限公司,創世紀季刊 2014。
    3. M. Schlesinger and M. Paunovic, Fundamental of Electrochemical Deposition, 2nd ed. Wiley,New York, 1998.
    4. A, Kubota and N. Koura, J. Met. Finish. Soc. Jpn., 1986, 37, 131, 694.
    5. M. Schlesinger and M. Paunovic, Modern Electroplating, 5nded.Vol. ll, pp.131-137
    6. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-optics of surface plasmon polaritons. Physics Reports 2005, 408 (3-4), 131-314.
    7. 吳民耀、劉威志,物理雙月刊 2006, 28(2), 486-496。
    8. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-97.
    9. William, L.; Alain, D & Thomas, W. E., Surface plasmon subwavelength optics. Nature Publishing Group 2003, 424, 824-30.
    10. Couture, M.; Zhao, S. S.; Masson, J. F., Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 2013, 15 (27), 11190-216.
    11. Rifat, A. A.; Ahmed, R.; Yetisen, A. K.; Butt, H.; Sabouri, A.; Mahdiraji, G. A.; Yun, S. H.; Adikan, F. R. M., Photonic crystal fiber based plasmonic sensors. Sensors and Actuators B: Chemical 2017, 243, 311-325.
    12. Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D., Low temperature metal-enhanced fluorescence. J Fluoresc 2007, 17 (6), 627-31.
    13. Zhang, Y.; Dragan, A.; Geddes, C. D., Wavelength Dependence of Metal-Enhanced Fluorescence. The Journal of Physical Chemistry C 2009, 113 (28), 12095-12100.
    14. Wang, X.; He, F.; Zhu, X.; Tang, F.; Li, L., Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence. Sci Rep 2014, 4, 4406.
    15. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D., Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 2005, 16 (1), 55-62.
    16. Jian, Z.; Evgenia, M.; Ignacy, G.; Zoya, L,; Joseph, R. Lakowicz. Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition. J. Phys. Chem. B 2005, 109, 7969-75.
    17. Chris, D. Geddes; Joseph, R. Lakowicz., Metal-Enhanced Fluorescence. Journal of Fluorescence 2002, 12, 122-129.
    18. Aslan,K.; Lakowicz,J.R.;Geddes,C.D.RapidDepositionof Triangular Silver Nanoplates on Planar Surfaces: Applications to Metal-Enhanced Fluorescence. J. Phys. Chem. B 2005, 109, 6247–6251.
    19. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence. J. Phys. Chem. B 2005, 109, 3157–3162.
    20. Pompa, P. P.; Martiradonna, L..; Torre, A. D.; Sala, F. D.; Manna, L.; De Vittorio, M.;
    Calabi, F.; Cingolani, R.; Rinaldi, R., Metal-enhanced fluorescence of colloidal nanocrycrystals with nanoscale control. Nat Nanotechnol 2006, 1(2), 126-30.
    21. Xia, B.; Wang, X.; Li, L., Preparation of hybrid thin films by a green synthesis method and their application. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 461, 92-97.
    22. Yi, F.; J, R. Lakowicz; Enhanced Fluorescence of Cy5-Labeled Oligonucleotides Near Silver Island Films: A Distance Effect Study Using Single Molecule Spectroscopy. J. Phys. Chem. B 2006, 110, 22557-62.
    23. Jian, Z.; Evgenia, M.; Ignacy, G.; Zoya, L,; Joseph, R. Lakowicz. Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition. J. Phys. Chem. B 2005, 109, 7969-75.
    24. Tabakman, S. M.; Chen, Z.; Casalongue, H. S.; Wang, H.; Dai, H., A new approach to solution-phase gold seeding for SERS substrates. Small 2011, 7 (4), 499-505.
    25. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2011, 2, 466.
    26. Kruss, S.; Srot, V.; van Aken, P. A.; Spatz, J. P., Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports. Langmuir 2012, 28 (2), 1562-8.

    無法下載圖示 本全文未授權公開
    QR CODE