簡易檢索 / 詳目顯示

研究生: 劉于翔
Liu, Yu-Xiang
論文名稱: Direct detection for Dark Matter in G2HDM and Z' search with Dark Matter at the LHC
Direct detection for Dark Matter in G2HDM and Z' search with Dark Matter at the LHC
指導教授: 陳傳仁
Chen, Chuan-Ren
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 69
英文關鍵詞: Gauge Two Higgs Doublet Model, Jet Substructure, Pair Higgs Production
DOI URL: http://doi.org/10.6345/NTNU202001368
論文種類: 學術論文
相關次數: 點閱:286下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we will study dark matter phenomenology in few different aspects. First, we study the complex scalar dark matter phenomenology in Gauged Two Higgs Doublet Model (G2HDM). The model has additional gauge $SU(2)_H\times U(1)_X$ that will leave an accidental $\mathbb{Z}_2$ symmetry after symmetry braking, which protects the stability of dark matter. We choose the scalar dark matter for our study, which can further categorized into doublet-like, triplet-like, and Goldstone-like dark matter by their composition of mixing elements. We test these dark matter by current constraints from PLANCK and XENON$1$T experiments. In the second part we study the dark matter search by means of the popular Higgs pair search in collider with an effective model. We use jet substructure technique for better resolution to find our signal from tremendous backgrounds at the LHC, and project the discovery rate for the High-Luminosity LHC.

    1. Prelude 1 2. Brief Review of the Standard Model 5 2.1 SM Particles 5 2.1.1 Gauge Sector 6 2.1.2 Fermion Sector 7 2.2 The SM Higgs mechanism 8 2.2.1 Masses of Gauge Boson and Coupling to Higgs 11 2.2.2 Masses of Fermion and Coupling to Higgs 14 3. Brife Review of Dark Matter 19 3.1 Weakly Interacting Massive Particle and Relic Abundance 20 3.2 WIMP DM Searches 22 3.2.1 Direct Detection 23 3.2.2 Indirect Detection 25 3.2.3 Collider Search 25 4. Dark Matter in G2HDM 27 4.1 The G2HDM Model 27 4.1.1 Introduction 27 4.1.2 Particles Content 28 4.1.3 The SSB of the Potential 29 4.1.4 Scalar Sector 31 4.1.5 Gauge Sector 33 4.1.6 Fermion Sector 35 4.1.7 Hidden symmetry 35 4.1.8 DM Candidate in G2HDM 36 4.2 Numerical Analysis 37 4.2.1 Constraints and Range of Parameters 37 4.2.2 Relic Density 39 4.2.3 Direct Detection 40 4.3 Results 42 4.3.1 Doublet-like DM 43 4.3.2 Triplet-like DM 45 4.3.3 Goldstone-like DM 46 4.3.4 Summary 48 5 Z′ Search with Dark Matter in LHC 51 5.1 Benchmark model 52 5.2 Collider Study 53 5.3 Summary 60 6 Summary 63 References 65

    [1]P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, in Community Summer Study 2013: Snowmass on the Mississippi, 10, 2013. 1310.8327.
    [2]D. Hooper, Particle Dark Matter, in Theoretical Advanced Study Institute in Elementary Particle Physics: The Dawn of the LHC Era, pp. 709–764, 2010. 0901.4090. DOI.
    [3]T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009, [1904.07915].
    [4]M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G 46 (2019) 103003, [1903.03026].
    [5]ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29, [1207.7214].
    [6]CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, [1207.7235].
    [7]F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321–323.
    [8]P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508–509.
    [9]G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587.
    [10]N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531–533.
    [11]M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652–657.
    [12] J. Aguilar-Saavedra, Top flavor-changing neutral interactions: Theoretical
    expectations and experimental detection, Acta Phys. Polon. B 35 (2004) 2695–2710, [hep-ph/0409342].
    [13]F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophys. J. 86 (1937) 217–246.
    [14]V. Rubin, N. Thonnard and J. Ford, W.K., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J. 238 (1980) 471.
    [15]E. W. Kolb and M. S. Turner, The Early Universe, vol. 69. 1990.
    [16]S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D
    70 (2004) 043506, [astro-ph/0403291].
    [17]Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological
    parameters, 1807.06209.
    [18]XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302,
    [1805.12562].
    [19]CRESST collaboration, F. Petricca et al., First results on low-mass dark matter from the CRESST-III experiment, J. Phys. Conf. Ser. 1342 (2020) 012076, [1711.07692].
    [20]J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524, [1307.5458].
    [21]F. Mayet et al., A review of the discovery reach of directional Dark Matter detection, Phys. Rept. 627 (2016) 1–49, [1602.03781].
    [22]J. L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-Violating Dark Matter, Phys. Lett. B 703 (2011) 124–127, [1102.4331].
    [23]G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747–767, [0803.2360].
    [24]P. J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011, [1109.4398].
    [25]W.-C. Huang, Y.-L. S. Tsai and T.-C. Yuan, G2HDM : Gauged Two Higgs Doublet Model, JHEP 04 (2016) 019, [1512.00229].
    [26]G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1–102, [1106.0034].
    [27]H. E. Logan, TASI 2013 lectures on Higgs physics within and beyond the Standard Model, 1406.1786.
    [28]N. G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574.
    [29]B. Kors and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586 (2004) 366–372, [hep-ph/0402047].
    [30]B. Kors and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069, [hep-ph/0503208].
    [31]C.-T. Huang, R. Ramos, V. Q. Tran, Y.-L. S. Tsai and T.-C. Yuan, Consistency of Gauged Two Higgs Doublet Model: Gauge Sector, JHEP 09 (2019) 048, [1905.02396].
    [32]A. Arhrib, W.-C. Huang, R. Ramos, Y.-L. S. Tsai and T.-C. Yuan, Consistency of a gauged two-Higgs-doublet model: Scalar sector, Phys. Rev. D 98 (2018) 095006, [1806.05632].
    [33]Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001.
    [34]G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186, [1801.03509].
    [35]ATLAS, CMS collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV, JHEP 08 (2016) 045, [1606.02266].
    [36]ATLAS collaboration, Measurement of the Higgs boson mass in the
    H → ZZ∗ → 4l and H → γγ channels with √s=13TeV pp collisions using the ATLAS detector, .
    [37]ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at 13 TeV with the ATLAS experiment., .
    [38]J. Alison et al., Higgs Boson Pair Production at Colliders: Status and Perspectives, in Double Higgs Production at Colliders (B. Di Micco,
    [39]M. Gouzevitch, J. Mazzitelli and C. Vernieri, eds.), 9, 2019. 1910.00012.
    S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160–3166, [hep-ph/9305266].
    [40]Y. L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001, [hep-ph/9707323].
    [41]M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pp. 270–279, 4, 1998. hep-ph/9907280.
    [42]M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, [0802.1189].
    [43]M. H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127–138.
    [44]J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001, [0802.2470].
    [45] N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The Littlest Higgs, JHEP 07 (2002) 034, [hep-ph/0206021].
    [46] A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002, [hep-ph/0603077].
    [47] C.-R. Chen, M.-C. Lee and H.-C. Tsai, Implications of the Little Higgs Dark Matter and T-odd Fermions, JHEP 06 (2014) 074, [1402.6815].
    [48]B. A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77–88, [hep-ph/9505225].
    [49] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300, [1310.1921].
    [50] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021.
    [51] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al.,
    The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, [1405.0301].
    [52] NNPDF collaboration, R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guffanti et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290–320, [1308.0598].
    [53] T. Sjostrand, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852–867, [0710.3820].
    [54] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin,
    A. Giammanco, V. Lemaître, A. Mertens et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057, [1307.6346].
    [55] R. Atkin, Review of jet reconstruction algorithms, J. Phys. Conf. Ser. 645 (2015) 012008.
    [56] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896, [1111.6097].
    [57] G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi, High Luminosity Large Hadron Collider HL-LHC, CERN Yellow Rep. (2015) 1–19, [1705.08830].
    [58] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, [1007.1727].
    [59] CMS collaboration, A. M. Sirunyan et al., Search for high-mass resonances in dilepton final states in proton-proton collisions at √s = 13 TeV, JHEP 06 (2018) 120, [1803.06292].
    [60] ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1 of pp col lision data col lected at √s = 13 TeV with the ATLAS detector, .

    下載圖示
    QR CODE