研究生: |
莊郁琳 Yu-Lin Chuang |
---|---|
論文名稱: |
矽奈米洞陣列太陽能電池 Silicon Nanohole Arrays Solar Cell |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 奈米洞陣列 、奈米洞陣列太陽能電池 |
英文關鍵詞: | nanohole arrays, nanohole arrays solar cell |
論文種類: | 學術論文 |
相關次數: | 點閱:137 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近期環保意識抬頭,各種再生能源之開發利用漸被高度重視,而太陽能為地球上取之不盡用之不竭之無汙染能源,如能有效利用,必能對於地球暖化與石油危機等議題大有貢獻。取矽作為太陽能電池之材料乃因其蘊藏量豐富,且具高硬度高熔點之優勢。但因平面矽材料對於太陽光入射後反射率達30%以上,入射能量大幅浪費而無法有效利用。故近期提出於矽表面添加奈米結構,將大幅降低反射,有效提升吸收率,將此應用於太陽能電池元件製作以提高光電轉換效率。
本研究乃將奈米洞陣列結構添加於太陽能電池元件中,此結構降低反射並增加吸收,同時增加pn接面面積並縮短載子傳輸路徑;將使更多之載子產生且被收集,增大光電流並進而提升元件光電轉換效率。
研究內容始於奈米洞陣列之光學反射率性質比較,討論不同結構參數對於奈米洞陣列結構表面光學反射率之影響;並成長n層薄膜及正背面電極於其上製成元件,與平面無結構者做光電轉換效率與外部量子效率提升之探討比較,以求出最佳矽奈米洞陣列太陽能電池之結構參數。
本研究所製成之pn結構奈米洞陣列太陽能電池相較於平面無結構者,於光電轉換效率與外部量子效率皆具顯著提升。最佳光電轉換效率為10.24%,量子效率最高值為72.8%。
On Earth, solar energy is inexhaustible and non-pollution. Here, we take silicon as the materials for solar cell because of its rich reserves, the advantages of high hardness and high melting point. But, after the light incident into the planar silicon surface, there will be over 30% of them reflected and wasted. Recently, adding nanostructures on silicon surface is proposed. It will significantly reduce reflections, effectively enhance the absorption, and improve the photoelectric current and the energy conversion efficiency.
Here, we add nanohole arrays structure on the surface of our solar cells, and that reduced the light reflection and increased the absorption. In addition, these nanohole structures increase the area of the p-n junction and reduce the carrier transport path, that will produce more of the carriers and more carriers are collected. Once photocurrent was increased and thus enhances the energy conversion efficiency of solar cells.
The study begins at the comparison of optical reflectivity properties for the various sizes of nanohole arrays, and we discuss the impact of nanohole arrays with different structural parameters. After growing n-layer and fabricating the electrodes of components, we compare the energy conversion efficiency and the external quantum efficiency of the devices which plane structure and with nanohole arrays structure devices, respectively. That is in order to find the optimum structure parameters of silicon solar cells.
We find the significantly improved of the energy conversion efficiency and the external quantum efficiency of the devices which were add nanohole arrays on the devices’ surface compare with planar devices. The best energy conversion efficiency is 10.24% and the highest external quantum efficiency is 72.8%.
1. 楊德仁,太陽能電池材料;五南圖書出版公司。
2. National Renewable Energy Laboratory;
http://www.nrel.gov/
3. 維基百科全書;http://zh.wikipedia.org/wiki/Wikipedia
4. 沈輝、曾祖勤,太陽能光電技術;五南圖書出版公司。
5. N. Naghavi, S. Spiering, M. Powalla et al., "High-
efficiency copper indium gallium diselenide (CIGS)
solar cells with indium sulfide buffer layers
deposited by atomic layer chemical vapor deposition
(ALCVD)," Prog. Photovoltaics 11 (7), 437-443 (2003).
6. B. Oregan and M. Gratzel, "A LOW-COST, HIGH-
EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED
COLLOIDAL TIO2 FILMS," Nature 353 (6346), 737-740
(1991).
7. R. Y. Ogura, S. Nakane, M. Morooka et al., "High-
performance dye-sensitized solar cell with a multiple
dye system," Appl. Phys. Lett. 94 (7), 3 (2009).
8. M. A. Green, K. Emery, Y. Hishikawa et al., "Solar
cell efficiency
tables (version 37)," Prog. Photovoltaics 19 (1), 84-
92.(2010)
9. W. Shockley, "Detailed Balance Limit of Efficiency of
p-n Junction Solar Cells," Journal of Applied Physics
32 (3), 510 (1961).
10. V. Aroutiounian, "Quantum dot solar cells," Journal
of Applied Physics 89, 2268 (2001).
11. A. J. Nozik, "Quantum dot solar cells," Physica E 14
(1-2), 115-120 (2002).
12. R. P. Raffaelle, S. L. Castro, A. F. Hepp et
al., "Quantum dot solar
cells," Prog. Photovoltaics 10 (6), 433-439 (2002).
13. B. Tian, "Coaxial silicon nanowires as solar cells
and nanoelectronic power sources," Nature 449 (7164),
885 (2007).
14. L. Tsakalakos, "Silicon nanowire solar cells," Appl.
Phys. Lett. 91,233117 (2007).
15. E. C. Garnett and P. D. Yang, "Silicon nanowire
radial p-n junction solar cells," J. Am. Chem. Soc.
130 (29), 9224-+ (2008).
16. O. Gunawan and S. Guha, "Characteristics of vapor-
liquid-solid grown silicon nanowire solar cells,"
Sol. Energy Mater. Sol. Cells 93(8), 1388-1393 (2009).
17. L. Hu and G. Chen, "Analysis of optical absorption in
silicon nanowire Arrays for photovoltaic
applications," Nano Lett. 7 (11),3249-3252 (2007).
18. B. M. Kayes, H. A. Atwater, and N. S.
Lewis, "Comparison of the device physics principles
of planar and radial p-n junction nanorod
solar cells," Journal of Applied Physics 97 (11), 11
(2005).
19. Y. B. Tang, Z. H. Chen, H. S. Song et
al., "Vertically Aligned p-Type
Single-Crystalline GaN Nanorod Arrays on n-Type Si for
Heterojunction Photovoltaic Cells," Nano Lett. 8
(12), 4191-4195(2008).
20. S. Mokkapati, "Designing periodic arrays of metal
nanoparticles for light-trapping applications in
solar cells," Appl. Phys. Lett. 95,053115 (2009).
21. J. Li, "Design guidelines of periodic Si nanowire
arrays for solar cell application," Appl. Phys. Lett.
95, 243113 (2009).
22. K. Q. Peng, X. Wang, X. L. Wu et al., "Platinum
Nanoparticle Decorated Silicon Nanowires for
Efficient Solar Energy Conversion," Nano Lett. 9
(11), 3704-3709 (2009).
23. K. Q. Peng, X. Wang, L. Li et al., "High-Performance
Silicon Nanohole Solar Cells," J. Am. Chem. Soc. 132
(20), 6872-+ (2010).
24. R. Kappera, W. Warrick, M. B. Tayahi, "Nanohole
structures for efficiency enhancement in thin film
photovoltaics," IEEE.978-1-4244-7187-4/10 (2010).
25. T. H. Reilly, J. van de Lagemaat, R. C. Tenent et al.,
"Surface-plasmon enhanced transparent electrodes in
organic photovoltaics," Appl. Phys. Lett. 92 (24), 3
(2008).
26. R. Biswas1,2, D. Zhou1, B. Curtin1, N. Chakravarty1,
V. Dalal"SURFACE PLASMON ENHANCEMENT OF OPTICAL
ABSORPTION OF THIN FILM A-SI:H SOLAR CELLS," IEEE.
978-1-4244-2950-9/09(2009).
27. X. Meng, et al., Sol. Energy Mater. Sol. Cells (2010),
doi:10.1016/j.solmat.2010.11.020.
28. H.C. Yuan, V.E. Yost, et al., "EFFICIENT BLACK
SILICON SOLAR CELLS WITH NANOPOROUS ANTI-REFLECTION
MADE IN A SINGLE-STEP LIQUID ETCH"IEEE.978-1-4244-
2950-9/09(2009).
29. S. C. Shiu, S. C. Hung, H. J. Syu et
al., "Fabrication of Silicon Nanostructured Thin Film
and Its Transfer from Bulk Wafers onto
Alien Substrates," J. Electrochem. Soc. 158 (2), D95-
D98(2011).
30. J. Zhu, Z. F. Yu, G. F. Burkhard et al., "Optical
Absorption Enhancement in Amorphous Silicon Nanowire
and Nanocone Arrays," Nano Lett. 9 (1), 279-282
(2009).
31. F. Wang, "Maskless fabrication of large scale Si
nanohole array via laser annealed metal nanoparticles
catalytic etching for photovoltaic application,"
Journal of Applied Physics 108 (2), 024301.(2010).
32. S. H. Zaidi, R. Marquadt et al., "Deeply etched
grating structures for enhanced absorption in thin c-
Si solar cells," 0-7803-7471-1 EEE1290 – 1293(2002).
33. S. E. Han and G. Chen, "Optical Absorption
Enhancement in Silicon Nanohole Arrays for Solar
Photovoltaics," Nano Lett. 10 (3), 1012-1015(2010).
34. C. Lin and M. L. Povinelli, "Optical absorption
enhancement in silicon nanowire and nanohole arrays
for photovoltaic application," JDuD25, OSA /
CLEO/QELS (2010).
35. Z. Q. Xiong, F. Y. Zhao, J. Yang et al., "Comparison
of optical absorption in Si nanowire and nanoporous
Si structures for photovoltaic applications," Appl.
Phys. Lett. 96 (18), 3.
36. F. Wang, H. Y. Yu, J. S. Li et al., "Optical
absorption enhancement in nanopore textured-silicon
thin film for photovoltaic application," Opt. Lett.
35 (1), 40-42(2010).
37. 微電能實驗室;http:// www.mse.fcu.edu.tw
38. 鄭旭志,光電系光電檢測課程教材;國立虎尾科技大學。
http://sparc.nfu.edu.tw/~memi/97%20plan/course.htm
39. 林明獻,太陽電池技術入門;全華圖書股份有限公司。
40. PVEDUACTION.ORG;http://pveducation.org/pvcdrom
41. 丁嘉仁、許沁如、聶雅玉、張哲瑋。次波長結構抗反射膜片發展
現況。機械工業雜誌,282。72(2006)。
42. 陳俊維,抗反射膜之模擬與製作及其在太陽電池之應用,
大同大學光電工程研究所;碩士論文(2007)。
43. J. S. Li, H. Y. Yu, Y. L. Li et al., "Low aspect-
ratio hemispherical nanopit surface texturing for
enhancing light absorption in crystalline Si thin
film-based solar cells," Appl. Phys. Lett. 98 (2), 3.
(2011)
44. 成大物理學系,光學系統設計進階篇。
http://www.phys.ncku.edu.tw/optics/book_2/b2_12_2002.pdf
45. 國研院奈米元件實驗室,
http://www.ndl.org.tw/web/index.html
46. 陳力俊,微電子材料與製程,中國材料科學學會。
47. 楊佳慶,利用聚焦離子束製作ALGaN/GaN奈米線之金氧半場效應電晶
體,國立中山大學物理研究所;碩士論文(2008)。
48. 謝易達,低能量電子束照射之烷基硫醇自組裝單分子層化學吸附於金
面做為微影製程之抗蝕刻阻劑,國立成功大學材料科學與工程學系;
碩士論文(2007)。
49. 明新科技大學機械工程系,http://acade.must.edu.tw/
50. Qiang Fang, Yafang Peng, HK Yu, International
Conference on Electronic Packaging Technology & High
Density Packaging(2008)
51. Advanced Silicon Device and Process Lab
http://nanosioe.ee.ntu.edu.tw/semilab/exp/solar
cell.ppt
52. R. Biswas, J. Bhattacharya, B. Lewis et
al., "Enhanced nanocrystalline silicon solar cell
with a photonic crystal back-reflector," Sol. Energy
Mater. Sol. Cells 94 (12), 2337-2342. (2010)
53. Q. J. Wang, J. Q. Li, C. P. Huang et al., "Enhanced
optical transmission through metal films with
rotation-symmetrical hole arrays," Appl. Phys. Lett.
87 (9), 3 (2005).
54. R. Biswas and D. Y. Zhou, "Simulation and modelling
of photonic and plasmonic crystal back reflectors for
efficient light trapping," Phys. Status Solidi A-
Appl. Mat. 207 (3), 667-670.
55. H. C. Yuan, V. E. Yost, M. R. Page et al., "Efficient
black silicon solar cell with a density-graded
nanoporous surface: Optical properties, performance
limitations, and design rules," Appl. Phys. Lett. 95
(12), 3 (2009).
56. H. M. Branz, V. E. Yost, S. Ward et
al., "Nanostructured black silicon and the optical
reflectance of graded-density surfaces," Appl.Phys.
Lett. 94 (23), 3 (2009).
57. 張仕添,InGaP/GaAs 雙接面與InGaP/GaAs/InGaAs 三接面串接
式太陽能電池之模擬與分析,國立彰化師範大學光電科技研究所;碩
士論文(2009)。