簡易檢索 / 詳目顯示

研究生: 黃家杰
Huang, Chia-Chieh
論文名稱: 國中學生知覺數學差異化教學環境、數學知識信念和數學解題自我調整學習之工具編製及相關研究
A Study on the Development of Instruments for Middle School Students on the Perception of Differentiated Instruction Environment, Epistemological Belief, and Self-Regulated Learning
指導教授: 陳美芳
Chen, Mei-Fang
梁淑坤
Leung, Shuk-Kwan
學位類別: 博士
Doctor
系所名稱: 特殊教育學系
Department of Special Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 164
中文關鍵詞: 資優教育數學教學差異化教學環境知識信念自我調整學習工具編製
英文關鍵詞: gifted education, mathematical instruction, differentiated instruction environment, epistemological belief, self-regulated learning, development of instruments
論文種類: 學術論文
相關次數: 點閱:286下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在因應國中數學領域潛能優異及不同能力學生去編製工具及執行相關研究。其目的有三:第一、發展「知覺數學差異化教學環境量表」、「數學知識信念量表」與「數學解題自我調整學習量表」。第二、探究不同數學能力學生在「知覺數學差異化教學環境量表」、「數學知識信念」與「數學解題自我調整學習」的差異。第三、探究數學潛能優異學生與非數學潛能優異學生「知覺數學差異化教學環境」和「數學知識信念」對「數學解題自我調整學習」的預測力。
    為達成研究目的,本研究共分為二個部分。第一個部分為量表發展(目的一),根據文獻及採用統計方法編製目前國內缺乏「知覺數學差異化教學環境量表」、「數學知識信念量表」與「數學解題自我調整學習量表」等三項量表工具。經研究者蒐集高雄市國中二年級學生資料進行預試(n=258)與正式量表(n=523)的發展,建立量表的信度與效度。
    第二個部分為探索性的相關研究分析(目的二及目的三),根據第一部分完成之工具及523份樣本資料作進一步的分析,其中數學潛能優異學生有103人;非數學潛能優異學生有420人(分四等級之人數為150人、103人、69人及98人)。利用單因子多變量分析針對5種能力學生在3個變項進行差異比較(目的二)。至於預測力(目的三),研究採用逐步多元迴歸分析針對數學潛能優異學生與非數學潛能優異學生進行「知覺數學差異化教學環境」和「數學知識信念」對「數學解題自我調整學習」的預測力分析。

    根據以上三個目的,本研究主要發現如下:
    一、本研究編製完成「知覺數學差異化教學環境量表」、「數學知識信念量表」與「數學解題自我調整學習量表」三份量表工具。信度與效度分析顯示,這些工具具有研究與實務參考價值。
    二、數學潛能優異學生與其他不同數學能力學生在「知覺數學差異化教學環境」有顯著差異。此結果顯示,數學教師可能對數學潛能優異學生較常採用的差異化教學策略包括「教材內容自主彈性」、「高層次思考」與「正向支持」;也可能是數學潛能優異學生對教師採用上述策略的知覺比較強烈。
    另外,數學潛能優異學生與其他不同數學能力學生在「在數學知識信念」與「數學解題自我調整學習」有顯著差異。數學潛能優異學生的數學知識信念趨近精熟數學知識信念,其在數學知識的確定性、數學知識的單一性、數學知識的來源與數學學習的辯證性皆趨近精熟數學知識信念。同時,數學潛能優異學生也具有較強的數學解題自我調整學習行為表現,尤其在認知調整與動機情感調整方面。
    三、無論在數學潛能優異學生群體或非數學潛能優異學生群體,學生知覺數學差異化教學環境的程度和本身數學知識信念的精熟程度,皆可有效預測數學解題自我調整學習行為表現。
    最後,研究者根據研究發現提出建議,以提供教師教學以及未來研究作為參考。

    The aim of this study is to consider middle school students who are promising in mathematics and other different mathematical abilities students in the development of instruments and administration of related studies. The objectives are three. First, to develop instruments: Perception of Differentiated Mathematics Instruction Environment Scale (PDMIES); Mathematics Epistemological Belief Scale (MEBS), and Self-regulated Learning in Mathematical Problem Solving Scale (SRL-MPS-S). Second, to explore differences of PDMIES, MEBS and SRL-MPS-S among promising students and other different mathematical abilities students. Third, to investigate the scores of students’ PDMIES and MEBS on the prediction of students’ SRL-MPS-S.
    To fulfill the above objectives there are two parts. The first part is to develop instruments (Objective 1). The investigators used literature and statistical methods and develop 3 needy instruments not yet found locally: PDMIES, MEBS and SRL-MPS-S. Data collection included grade 8 middle school students in Kaohsiung (n=258 for pilot; n=523 for main study) in attaining validity and reliability during the development.
    The second part is an exploratory study on related studies (Objective 2 & Objective 3), using the results of part one and subsequent analyses of 523 students from main study. The number of promising students was 103 and other students counting to 420 (the number of students in four ability levels are150, 103, 69, and 98 respectively). Statistical methods used in part two were one-way MANOVA (Objective 2) and stepwise regression (Objective 3).
    Based on the above three objectives the main results of this research were as follow:
    1. There were adequate validity and reliability in the three scales for practitioners and for research: Perception of Differentiated Mathematics Instruction Environment Scale (PDMIES); Mathematics Epistemological Belief Scale (MEBS), and Self-regulated Learning in Mathematical Problem Solving Scale (SRL-MPS-S).
    2. Promising students and other different mathematical abilities students had significant differences in PDMIES. This results indicated that teachers can used different strategies in teaching promising students, including the four subscales in PDMIES: material elasticity and autonomy, higher-order thinking, and positive support.
    In addition, promising students and other different mathematical abilities students had significant differences in MEBS and SRL-MPS-S. This results indicated that teachers can used different strategies in teaching promising students, including the four subscales in PDMIES. The mathematics epistemological belief of mathematical promising students approaching to sophisticated belief, including certainty of knowledge, simplicity of knowledge, sources of knowledge, and justification for knowing. Also, mathematical promising students had stronger behavior in self-regulated learning in mathematical problem solving, especially in the regulation of cognition and the regulation of motivation/ affect.

    3. For both promising students and other different mathematical abilities students, their scores in PDMIES and MEBS had significant influence on SRL-MPS-S .
    Based on these findings, implications for practice and future researches were discussed.

    誌 謝 I 摘 要 II ABSTRACT IV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 8 第三節 名詞釋義 10 第四節 研究範圍與限制 12 第二章 文獻探討 13 第一節 數學差異化教學環境 13 第二節 數學知識信念 22 第三節 數學解題自我調整學習 32 第四節 小結 43 第三章 量表編製與結果(研究第一部分) 45 第一節 量表編製的研究方法與架構 45 第二節 研究對象 46 第三節 量表工具的發展 48 第四節 量表資料的處理與分析 54 第五節 知覺數學差異化教學環境量表發展結果 55 第六節 數學知識信念量表發展結果 66 第七節 數學解題自我調整學習量表發展結果 76 第四章 相關研究的結果與討論(研究第二部分) 87 第一節 相關研究的研究方法與架構 87 第二節 不同數學能力學生在知覺數學差異化教學環境、數學知識信念與數學解題自我調整學習的差異比較 95 第三節 數學潛能優異學生與非數學潛能優異學生在知覺數學差異化教學環境和數學知識信念對數學解題自我調整學習的預測力 116 第五章 結論與建議 127 第一節 結論 127 第二節 建議 132 參考文獻 136 附 錄 148 附錄一 知覺數學差異化教學環境量表題項 148 附錄二 數學知識信念量表題項 149 附錄三 數學解題自我調整學習量表題項 150 附錄四 國中學生數學學習經驗問卷(預試) 151 附錄五 國中學生數學學習經驗問卷(正式) 158

    壹、中文部分
    江民瑜(2013)。學業情緒為中介的自我調整學習模式之檢驗:以數學領域為例。當代教育研究季刊,21(3),113-150。
    余民寧(2006)。潛在變項模式:SIMPLIS的應用。台北市:高等教育。
    吳明隆(2007)。結構方成模式AMOS的操作與應用。台北市:五南。
    吳明隆(2008)。SPSS操作與應用:多變量分析實務。台北市:五南。
    吳明隆(2009)。SPSS操作與應用:問卷統計分析實務(二版)。台北市:五南。
    林宴瑛、程炳林(2007)。個人目標導向、課室目標結構與自我調整學習策略之潛在改變量分析。教育心理學報,39(2),173-194。
    林清山(1988)。多變項分析統計法。台北市:東華。
    邱皓政(2010)。量化研究與統計分析:SPSS(PASW)資料分析範例。台北市:五南。
    邱皓政(2010)。量化研究與統計分析:SPSS資料分析範例。台北市:五南。
    侯雅齡(2010)。激發資優生對知識的熱忱---數學資優課程應有的調整。 南屏特殊教育,1,61-69。
    凃金堂(2014)。中小學生「數學知識信念量表」之發展與信孝度考驗。測驗學刊,61(4),533-556。
    香港特別行政區政府教育局(2008)。照顧學生個別差異--共融校園指標。 2014年6月20日,取自: http://www.edb.gov.hk/attachment/tc/edu-system/special/policy-and-initiatives/indicators-082008_tc.pdf
    唐劍嵐(2006)。學生數學認識信念:一個值得關注的領域。台灣數學教師電子期刊,6,28-38。
    教育部(1998)。國民教育階段九年一貫課程總綱綱要。台北:教育部。
    教育部(2006)。身心障礙及資賦優異學生鑑定標準。台北:教育部。
    教育部(2007)。資優教育白皮書。2008年7月10日, 取自 http://www.ntnu.edu.tw/spe/cage/the%20white%20book970410.pdf
    許嘉家、詹志禹(2010)。「高中職個人知識論信念量表」之編製與驗證。測驗學刊,57(3),433-458。
    陳志恆、林清文(2008)。國中學生自我調整學習策略量表之編製及研究。輔導與諮商學報,30(2),1-36。
    陳偉仁、黃楷茹、陳美芳(2013)。學校學習支援系統中差異化教學的實施。教育研究月刊,233,5-20。
    陳萩卿、張景媛(2007)。知是信念影響學習運作模式之驗證。教育心理學報,39(1),23-43。
    陳嘉成(2007)。區別高低分群學生數學成就因素的國際比較-以台灣、南韓、澳洲與賽普勒斯的TIMSS 2003學生背景變項爲例。測驗學刊, 54(2),377-401。
    黃家杰、梁淑坤(2007)。小學一般智能資優資源班新生數學解題歷程之分析。台灣數學教師(電子)期刊,12,1-16。
    黃家杰、陳美芳、陳長益、李乙明、呂金燮(2010)。教師區分性教學行為觀察量表(學生版)之編製。特殊教育研究學刊,35(1),63-82。
    劉佩雲(2002)。自我調整學習的課程與教學。課程與教學季刊,5(3),35-48。
    魏勇剛、龍長權、宋武(譯)(2010)。量表編製理論與應用。(原作者:R. F. DeVellis)。台北市:五南。(原著出版年:2003)。

    貳、英文部分
    Aydin, Y. Ç., Uzuntiryaki, E., & Demirdöğen, B. (2011). Iterplay of motivational and cognitive strategies in predicting self-efficacy and anxiety. Educational Psychology, 31(1), 55-66.
    Baxter, M., & Marcia, B. (1992). Knowing and reasoning in college: Gender-related patterns in students' intellectual development. San Francisco: Jossey Bass.
    Belenky, M. F., Clinchy, B. M., Goldberger, N., & Tarule, J. (1986). Women's Ways of knowing: The development of self, voice and mind. New York: Basic Books.
    Belet, Ş. D., & Güven, M. (2011). Meta-cognitive strategy usage and epistemological beliefs of primary school teacher trainees. Educational Sciences: Theory & Practice, 11(1), 51-57.
    Bråten, I., & Strømsø, H. I. (2005). The relationship between epistemological beliefs, implicit theories of intelligence, and self-regulated learning among Norwegian postsecondary students. British Journal of Educational Psychology, 75(4), 539-565.
    Campbell, B. (2008). Handbook of differentiated instruction using the multiple intelligences: lesson plans and more. Boston, MA: Allyn and Bacon.
    Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203-221.
    Cassady, J. C., Neumeister, K. L. S., Adams, C. M., Cross, T. L., Dixon, F. A., & Pierce, R. L. (2004). The differentiated classroom observation scale. Roeper Review, 26, 139-146.
    Clarebout, G., Elen, J., Luyten, L., & Bamps, H. (2001). Assessing epistemological beliefs: Schommer's questionnaire revisited. Educational Research and Evaluation: An International Journal on Theory and Practice, 7(1), 55-77.
    De Corte, E., Op'T Eynde, E., & Verschaffel, L. (2002). Knowing what to believe: The relevanc of students' mathematical beliefs for mathematics education. In B. K. Hofer & P. R. Pintrich (Eds.), Personal Epistemology (pp. 297-320). New York: Lawrence Erlbaum Associates.
    De Corte, E., Verschaffel, L., & Op'T Eynde, E. (2000). Self-regulation: A characteristic and a goal of mathematics education. In M. Boekaerts & P. R. Pintrich (Eds.), Handbook f self-regulation (pp. 687-726). Florida: Academic Press.
    Garrett-Ingram, C. (1997). Something to believe in: The relationship between epistemological beliefs and study strategies. Paper presented at the the Annual Meeting of the American Educational Research Association, Chicago, IL, USA.
    Gregory, G. H. (2005). Differentiating instruciton with style: aligning teacher and learner intelligneces for maximum achievement. Thousand Oaks, California: Crowin Press.
    Gregory, G. H., & Chapman, C. (2007). Differentiated instructional strategies: One size doesn't fit all (2nd). Thousand Oaks, Calif. : Corwin Press.
    Harbaugh, A. G., & Cavanagh, R. F. (2012). Associations between the classroom learning environment and student engagement in learning 2: A structural equation modelling approach. Australia: AARE.
    Ho, S. R. (2004). Gifted teachers' beliefs and practices regarding standards/state standardized tests, effective assessment and differentiation in a special school for gifted elementary students. (Ph.D.), University of Virginia, United States -- Virginia.
    Hofer B., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88-140.
    Hofer NCTM. (2000). Principles and standards for school matahematics. Retrieved August 19th, 2011, from http://www.nctm.org/standards/content.aspx?id=16909
    Hofer, B. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378-405.
    Hofer, B. (2001). Personal epistemology research: Implications for learning and teaching. Educational Psychology Review, 13(4), 353-383.
    Hofer, B. (2002). Personal epistemology as a psychological and educational construct: An introduction. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology (pp. 3-13). New York: Lawrence Erlbaum Associates.
    Hofer, B. (2010). Personal epistemology in Asia: Burgeoning research and future directions. The Asia-Pacific Education Researcher, 19(1), 179-184.
    Huxtable, M. (2009). Creating inclusive and inclusional understandings of gifts and talents through living educational theory research. In T. Balchin, B. Hymer, & D. J. Matthews (Eds.), The routledge international companion to gifted education (pp. 292-298). London: Routledge.
    Jehng, J. J., Johnson, S. D., & Anderson, R. C. (1993). Schoolong and students' epistemological beliefs about learning. Contemporary Educational Psychology, 18(1), 23-35.
    King, P. M., & Kitchener, K. S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco: Jossey-Bass.
    Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29-63.
    Lester, F. K. (1980). Problem solving: Is it a problem? In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 29-45). Berkeley, Calif: McCutchan Pub. Co.
    Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes (Final report, NSF project MDR 85-50346). Bloomington: Indiana University, Mathematics Education Development Center.
    Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics research report. Helsiniki, Finland: Helsiniki Rniversity Press.
    Malmivuori, M. L. (2004). A dynamic viewpoint: Affect n the functioning of self-system processes. Paper presented at the Proceedings of the PME-28 Conference, Bergen University College, Norway.
    Malmivuori, M. L. (2006). Affect and self-regulation. Educational studies in mathematics, 63, 149-164.
    Malpass, J. R., O'Neil, J. H. F., & Hocevar, D. (1999). Self-regulation, goal orientation, self-efficacy, worry, and high-stakes math achievement for mathematically gifted high school students. Roeper Review, 21(4), 281-288.
    Marzano, R. J., & Kendall, J. S. (2008). Designing & assessing educational objectives: Applying the new taxonomy. California: Corin Press.
    McCombs, B. L. (2001). Self-regulated learning and acdemic achievement: A phenomenological view. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and acdemic achievement theoretical perspectives (2nd ed., pp. 67-123). Mahwah, NJ: LEA.
    Muis, K. R. (2007). The role of epistemic beliefs in self-regualted learning. Educational psychologist, 42(3), 173-190.
    Neber, H., & Schommer-Aikins, M. (2002). Self-regulated science learning with highly gifted students: The role of cognitive, motivational, epistemological, and environmental variables. High Ability Studies, 13(1), 59-74.
    Nielsen, S. G. (2010). Epistemic beliefs and self-regulated learning in music students. Psychology of Music, 40(3), 324-338.
    Northey, S. S. (2005). Handbook on differentiated instruction for middle and high schools. Larchmont, NY: Eye on Educaiton.
    Parpala, A., Lindblom-Ylanne, S., Komulainen, E., & Entwistle, N. (2013). Assessing students' experiences of teaching-learning environments and approaches to learning: Validation of a questionnaire in different countries and varying contexts. Learning Environments Research, 16(2), 201-215.
    Paulsen, M. B., & Feldman, K. A. (1999a). Epistemological beliefs and self-regulated learning. Journal of Staff, Program, & Organization Development, 16(2), 83-91.
    Paulsen, M. B., & Feldman, K. A. (1999b). Student motivation and epistemological beliefs. New Directions for Teaching and Learning, 78, 17-25.
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaert & P. R. Pintrich (Eds.), Handbook of self-regulation (pp. 451-502). San Diego, CA: Academic Press.
    Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40.
    Polya, G. (1945). How to slove it. New York: Doubleday.
    Porath, M., Lupart, J., Katz, J., Ngara, C., & Richardson, P. (2009). Gifted learners' epistemological beliefs. Talent Development & Excellence, 1(1), 57-66.
    Ramdass, D., & Zimmerman, B. J. (2008). Effects of self-correction strategy training on middle school students' self-efficacy, self-evaluation, and mathematics division learning. Journal of Advanced Academics, 20(1), 18-41.
    Rebbello, C. M., Siegel, M. A., Witzig, S. B., Freyermuth, S. K., & McClure, B. A. (2012). Epistemic beliefs and conceptual understanding in biotechnology: A Case Study. Res Sci Educ, 42, 353-371.
    Rock, M. L., Gregg, M., Ellis, E., & Gable, R. A. (2008). REACH: A framework for differentiating classroom instruction. Preventing School Failure, 52(2), 31-47.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Florida: Academic Press.
    Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York: Macmillan.
    Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprhension. Journal of Educational Psychology, 82, 498-504.
    Schommer, M. (1993). Epistemological development and academic performance among secondary students. Journal of Educational Psychology, 85(3), 406-411.
    Schommer, M. (1994). An emerging conceptualization of epistemological beliefs and their role in learning. In R. Garner & P. A. Alexander (Eds.), Beliefs about text and instruction with text (pp. 25-40). NJ: LEA.
    Schommer, M., & Dunnell, P. A. (1994). A comparison of epistemological beliefs between gifted and non-gifted high school students. Roeper Review, 16(3), 207-210.
    Schommer, M., Crouse, A., & Rhodes, N. (1992). Epistemological beliefs and mathematical text comprehension: Believing it is simple does not make it so. Journal of Educational Psychology, 84(4), 435-443.
    Schommer-Aikins, M. (2002). An evolving theoretical framework for an epistemological belief system. In B. K. Hofer & P. R. Pintrich (Eds.), Personal Epistemology (pp. 103-118). New York: Lawrence Erlbaum Associates.
    Schommer-Aikins, M., Duell, O. K., & Hutter, R. (2005). Epistemological beliefs, mathematical problem-solving beliefs, and academic performance of middle school students. Elementary School Journal, 105(3), 289-304.
    Schommer-Aikins, M., Mau, W.-C., Brookhart, S., & Hutter, R. (2000). Understanding middle students' beliefs about knowledge and learning using a multidimensional paradgm. Journal of Educational Research, 94, 120-127.
    Schraw, G., Bendixen, L. D., & Dunkle, M. E. (2002). Development and valiation of the Epistemic Belief Inventory (EBI). In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology (pp. 261-275). New York: Lawrence Erlbaum Associates.
    Schunk, D. H. (2001). Social cognitive theory and self-regulated Learning. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and acdemic achievement theoretical perspectives (2nd ed., pp. 125-151). Mahwah, NJ: LEA.
    Schunk, D. H., & Ertmer, P. A. (2000). Self-regulation and academic learning: Self-efficacy enhancing interventions. In M. Boekaerts & P. R. Pintrich (Eds.), Handbook of self-regulation (pp. 631-649). Florida: Academic Press.
    Stager, A. (2007). Differentiated instruction in mathematics. (M.A.), Caldwell College, New Jersey.
    Stahl, E., Pieschl, S., & Bromme, R. (2006). Task complexity, epistemological beliefs and metacognitive calibration: An exploratory study. Journal of Educational Computing Research, 35(4), 319-338.
    Tolhurst, D. (2007). The influence of learning environments on students' epistemological beliefs and learning outcomes. Teaching in Higher Education, 12(2), 219-233.
    Tomlinson, C. A. (1999). The differentiated classroom: Responding to the needs of all learners. Alexandria, VA: ASCD.
    Tomlinson, C. A., & Eidson, C. C. (2003). Differentiation in practice: a resource guide for differentiating curriculum, grades 5-9. Alexandria, VA: Association for Supervision and Curriculum Development.
    VanTassel-Baska, J., & Stambaugh, T. (2006). Comprehensive curriculum for gifted learners (3rd). Boston, MA: Person Education.
    VanTassel-Baska, J., Quek, C. G., & Feng, A. X. (2007). The development and use of a structured teacher observation scale to assess differentiated best practice. Roeper Review, 29(2), 84-92.
    Velayutham, S., & Aldridge, J. M. (2013). Influence of psychosocial classroom environment on students' motivation and self-regulation in science learning: A structural equation modeling approach. Research in Science Education, 43(2), 507-527.
    Verschaffe, l., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Learning and Thinking, 1(3), 195-229.
    Zimmerman, B. J. (1986). Development of self-regulated learning: Which are the key sub-processes? Contemporary Educational Psychology, 16, 307-313.
    Zimmerman, B. J. (1990). Self-regulating academic learning and achievement: The emergence of a social cognitiv perspective. Educational Psychology Review, 2, 173-201.
    Zimmerman, B. J. (2000). Attaining self-regulation: A socal cognitive perspective. In M. Boekaerts & P. R. Pintrich (Eds.), Handbook of self-regulation (pp. 13-39). Florida: Academic Press.
    Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: An overview and Analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and acdemic achievement theoretical perspectives (2nd ed., pp. 1-37). Mahwah, NJ: LEA.

    下載圖示
    QR CODE