簡易檢索 / 詳目顯示

研究生: 沈嘉勇
Shen, Jia-Yong
論文名稱: R410A窗型冷氣機節能之研究
The Energy Saving Study of R410A Room Air Conditioner
指導教授: 莫懷恩
Mo, Huai-En
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 窗型冷氣機R410A節能COPEER
英文關鍵詞: Room Air-Conditioner, R410A, Energy-Saving, Coefficient of performance, Energy Efficiency Ratio
DOI URL: https://doi.org/10.6345/NTNU202205166
論文種類: 學術論文
相關次數: 點閱:192下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源大量的消耗,導致日益顯著的溫室效應與全球氣候變遷,造成人類生活環境的嚴重威脅。如何提昇空調設備的能源效率比(Energy efficiency ratio, EER),實為當前急需解決的問題。
    若將機能性纖維包覆於壓縮機外殼,使用系統之冷凝水進行蒸發冷卻,藉以降低壓縮機之產生熵,便可提升冷氣機性能,達成節能之目的。
    本研究成功驗證機能性纖維應用於R410A窗型冷氣機,可提高系統性能,達到節能的效果。研究結果顯示,壓縮機包覆纖維後,冷氣總消耗功率下降4.7%,冷凍能力上升2.5%;COP大幅提升14.1%、EER則提升7.5%。

    Large energy consumption is caused global climate change and the greenhouse effect significant increased, they pose a serious threat in the human living environment. They are the current urgent problems how to improve the energy efficiency ratio (EER) of air conditioning equipment.
    This study aimed to reduce the power consumption of compressor and to increase the EER of R410A room air conditioner. The main method is decreased compressor temperature through evaporative cooling effect of the functional fibers, to achieve the purpose of this study.
    The functional fibers can successfully apply in R410A room air conditioner, it proved to decrease the entropy generation in compression process, improve system performance, and achieve energy-saving. The results show that the total power consumption is reduced by 4.7%, the cooling capacity is increased by 2.5%, the Coefficient of Performance (COP) is improved by 14.1%, and the EER is raised by 7.5%.

    摘要 i Abstract iii 誌謝 v 表目錄 ix 圖目錄 xi 第一章 前言 1 1.1. 研究背景與動機 1 1.2. 文獻回顧 3 1.2.1 機能性吸濕排汗纖維 3 1.2.2 蒸氣壓縮冷凍循環系統 5 1.3. 研究假設 7 1.4. 研究目的 8 1.5. 研究方法 9 1.6. 論文架構 10 第二章 理論基礎 11 2.1 國家標準CNS規範 11 2.2 理想蒸氣壓縮冷凍循環系統 12 2.3 實際蒸氣壓縮冷凍循環系統 15 2.4 熱力學第一定律分析 17 第三章 實驗設計 21 3.1 實驗系統說明 22 3.2 實驗設備與量測儀器 24 3.2.1 實驗設備 24 3.2.2 量測儀器 28 3.2.3 環境控制室 32 3.3 實驗流程 34 3.4 實驗步驟與量測方法 35 3.4.1 原機性能實驗 35 3.4.2 新型機性能實驗 36 3.4.3 量測方法 37 3.5 數據處理 39 3.6 誤差分析 41 第四章 結果與討論 45 4.1 溫度與壓力之比較 46 4.2 壓縮機各狀態點之比較 49 4.3 性能係數之比較 54 4.4 能源效率比之比較 58 4.5 整體性能之比較 62 第五章 結論及建議 65 5.1 結論 65 5.2 建議 66 參考文獻 67 符號彙編 71 作者簡介 75

    [1] 吳嘉興、邱曉瑩,“台灣發展太陽光電產業之關鍵成功因素分析”,管理資訊計算,第78-95頁,第3卷,第2期,2014年。
    [2] 經濟部能源局,“能源產業技術白皮書”,第47-51頁,第3卷,2014年。
    [3] 經濟部統計處,工業生產調查。取自http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDA.aspx.
    [4] S. Peck, and J. Richie, “Green roofs and the urban heat island effect,” Buildings., Cedar Rapids, IA 4, 2009.
    [5] S. Anand, and S. K. Tyagi, “Exergy analysis and experimental study of a vapor compression refrigeration cycle, ” Journal of thermal analysis and calorimetry., vol. 110, no. 2, pp. 961-971, 2012.
    [6] 葉承翰,“應用吸濕速乾纖維提升R410A窗型空調機性能研究”,國立臺灣師範大學,碩士論文,2014年7月。
    [7] 工業總會服務網,“機能性紡品 再創人纖業光芒”。取自http://www.cnfi.org.tw/kmportal/front/bin/ptdetail.phtml?Part=magazine9604-445-10.
    [8] 中華民國紡織業拓展會,“機能性紡織品競爭力與市場發展分析”,第1-2頁,2007年4月。
    [9] 章以慶、李貴琪、游輝仁、繆梅芬,“兩種吸濕排汗合成纖維與純棉纖維織物之人體動靜態舒適性研究”,實踐設計學報,第72-89頁,第5期,2011年10月。
    [10] 李銘軒、李貴琪、張偉瑤、周勝賢,“不同吸濕排汗織物舒適性之比較”,華岡紡織期刊,第23-37頁,第16卷,第1期,2009年3月。
    [11] 劉于詮、蘇宣輔,“不同布料吸濕排汗特性比較之實作”,華人運動生物力學期刊,第226-228頁,第7期,2012年10月。
    [12] 林憲章、劉于詮、蘇宣輔、李伯倫、林宏偉,“市面常見排汗衫布料之吸濕排汗特性比較”,屏東教大體育,第259-268頁,第17期,2014年6月。
    [13] 王燦燊,“紫外線照射與洗滌對吸濕排汗材料功能影響之比較”,臺北科技大學,碩士論文,2014年7月。
    [14] H. Liang and H. K Thomas, “Irreversibility analysis of a water-to-water mechanical-compression heat pump,” Energy.,vol. 16, no. 6, pp. 883, 1991.
    [15] 楊敏雄、葉榮華,“冷凍系統的熱效益分析”,海運研究學刊,第91-98頁,第6期,1998年10月。
    [16] C. E. Vincent, M. K. Heun, “Thermo economic analysis & design of domestic refrigeration systems,” In Domestic use of energy conference., 2006.
    [17] J. U. Ahamed, R. Saidur, and H. H. Masjuki, “A review on exergy analysis of vapor compression refrigeration system,” Renewable and Sustainable Energy Reviews., vol. 15, no. 3, pp. 1593-1600, 2011.
    [18] S. Anand, and S. K. Tyagi, “Exergy analysis and experimental study of a vapor compression refrigeration cycle,” Journal of thermal analysis and calorimetry., vol. 110, no. 2, pp. 961-971, 2012.
    [19] V. M. V. Padmanabhan, and S. K. Palanisamy, “Exergy efficiency and irreversibility comparison of R22, R134a, R290 and R407C to replace R22 in an air conditioning system,” Journal of Mechanical Science and Technology., vol. 27, no. 3, pp. 917-926, 2013.
    [20] J. L. C. Fannou, C. Rousseau, L. Lamarche, and S. Kajl, “A comparative performance study of a direct expansion geothermal evaporator using R410A and R407C as refrigerant alternatives to R22,” Applied Thermal Engineering., vol. 82, no. 5, pp. 306-317, May. 2015.
    [21] M. H. Yang, R. H. Yeh, “Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems,” International Journal of Heat and Mass Transfer., vol. 87, pp. 1-10, Aug. 2015.
    [22] 李懿庭,“微型化蒸氣壓縮循環電子散熱系統研究”,臺灣大學機械工程學系,碩士論文,2009年1月。
    [23] 謝文德、鍾弘道、張凱涵、王啓川,“冷凍冷藏系統熱回收文獻回顧”,冷凍空調與能源科技雜誌,第35-53頁,第65期,2010年10月。
    [24] 楊建裕、陳加偉、林福真,“冷凍空調節能技術發展規劃”,前瞻科技與管理,第25-40頁,第1卷,第2期,2011年11月。
    [25] Z. Lei, “Model-based optimization for vapor compression refrigeration cycle,” Energy ., vol. 55, pp. 392-402, 2013.
    [26] X. Yang, L. Zhao, H. Li, Z. Yu, “Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture,” Applied Energy., vol. 160, no. 15, pp. 912-919, Dec. 2015.
    [27] Y. T. Ge, S. A. Tassou, I. D. Santosa, K. Tsamos, “Design optimisation of CO2 gas cooler/condenser in a refrigeration system,” Applied Energy., vol. 160, no. 15, pp. 973-981, Dec. 2015.
    [28] Y. Lu, Y. Wang, C. Dong, L. Wang, A. P. Roskilly, “Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine,” Applied Thermal Engineering., vol. 91, no. 5, pp. 591-599, Dec. 2015.
    [29] L. Sun, W. Han, H. Jin, “Energy and exergy investigation of a hybrid refrigeration system activated by mid/low-temperature heat source,” Applied Thermal Engineering., vol. 91, no. 5, pp. 913-923, Dec. 2015.
    [30] F. Wang, D.Y. Li, Y. Zhou, “Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants,” Applied Thermal Engineering., vol. 91, no. 5, pp. 363-369, Dec. 2015.
    [31] G. Yan, J. Chen, J. Yu, “Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle,” Applied Thermal Engineering., vol. 105, no. 15, pp. 509-517, Nov. 2015.
    [32] H. M. Nieh, T. P. Teng, C. C. Yu, “Enhanced heat dissipation of a radiator using oxide nano-coolantOriginal Research Article,” International Journal of Thermal Sciences., vol. 77, pp. 252-261, Mar. 2014.
    [33] 經濟部國家標準檢驗局,CNS14464無風管空氣調節機與熱泵之試驗法及性能等級,2003。

    下載圖示
    QR CODE