簡易檢索 / 詳目顯示

研究生: 葉傅文
Fu-Wen Ye
論文名稱: 機械手臂結合影像系統之控制
Mechanical Arm Control Combined with Image System
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 機械手臂影像辨識D-H 座標系統逆向運動學
英文關鍵詞: Mechanical arm, Vision classification, IK solution, D-H coordinate system
論文種類: 學術論文
相關次數: 點閱:2064下載:207
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究內容為使用機械手臂結合影像辨識系統,取得工作空間中目標物件之座標,以進行物件的抓取或移動。由於機械手臂在現實生活當中的應用存在許多變數,不同的任務下針對物件姿態所能容許的移動方式可能有所限制,例如移動盛水的杯子要避免傾倒的姿勢。一般過去的研究僅強調物件定位的精確度,而並未考慮機械手臂的姿態,有鑒於此,本控制系統會在執行物件的抓取時,依據任務之目的切換不同的控制策略,以符合正確的任務目的與物件擺放姿態。
    若要將機械手臂整合影像系統並成功應用於實作,則必須依照工作空間內的變化做出即時的運算,本研究除了利用影像處理進行物件的輪廓與顏色判別外,還配合夾爪上的雷射光模組所投影的光點作為回饋進行定位。在本研究當中所使用的機械手臂具有六軸關節存在運動學冗餘度的問題,因此本研究之系統必須事先進行D-H座標系統的順向與逆向運動學分析,推算出三維空間卡式座標系統與機械手臂各關節馬達轉動角度之間的關係,如此一來才能實現快速、靈活與準確的控制。本研究最後成功建立一套通用的多軸機械手臂控制方法,能夠應用到各種類似配置的機械手臂上,透過影像處理分析攝影機接收到的資訊,以應付各種不同的環境下更加複雜的應用與操作。

    In this paper, we propose a general approach to control mechanical arm which combine an image identification system. Obtain the object’s coordinate information in workspace, in order to move an object to a desire position. There are many situations when using mechanical arm in reality applications, the object's posture may be restricted in different tasks. Many past studies only emphasized the accuracy of object location, but did not consider the posture of the robot arm. Therefore, our control system will switch to different control strategy according to the purpose of tasks.
    Mechanical arm has 6-DOF and can perform highly flexible action, analysis forward and backward kinematics equations from D-H coordinate system. After computed object coordinate, IK solution methods are applied to mechanical arm gripper position control. Finally, the mechanical arm can distinguish between difference figures and colors. Our study hopes to establish a general multi-axis mechanical arm control method which can be applied to mechanical arm with similar configuration. Analysis camera information received through the image processing to meet the more complex applications and operating in different environments.

    摘要............................................................i Abstract.........................................................ii 誌謝........................................................... iii 目錄...........................................................iv 圖目錄.........................................................vi 表目錄...........................................................x 第一章 緒論.....................................................1 1.1 前言....................................................1 1.2 文獻回顧................................................2 1.3 研究動機與目的..........................................8 1.4 本論文之貢獻............................................9 1.5 論文架構................................................9 第二章 理論基礎................................................11 2.1 座標系統轉換..........................................11 2.1.1 旋轉轉換.........................................12 2.2 D-H座標系統定義........................................12 2.3 數位影像基本定義.......................................15 2.4 濾波處理...............................................17 2.5 邊緣偵測...............................................18 2.5.1 Canny邊緣偵測.....................................22 2.6 影像二值化.............................................23 2.7 形態學影像處理.........................................23 2.7.1 膨脹與侵蝕........................................24 第三章 系統組成設計與配置......................................28 3.1 機械手臂系統設計目標...................................28 3.2 機械手臂機構設計.......................................28 3.3 AI直流伺服馬達.........................................33 3.4 AI直流伺服馬達控制器...................................36 3.5 影像模組...............................................37 3.6 抓取策略切換之特色.....................................38 3.7 控制系統流程敘述.......................................40 第四章 系統設計原理............................................42 4.1 影像處理...............................................42 4.2 投影平面原理...........................................44 4.3 機械手臂系統...........................................44 4.3.1 順向運動學.......................................48 4.3.2 逆向運動學.......................................49 4.3.2垂直抓取法.......................................54 第五章 實驗結果與討論..........................................56 5.1 物件座標取得...........................................56 5.2 機械手臂控制...........................................60 5.2.1 定位準確度模擬....................................62 5.2.2 物件抓取實驗......................................64 第六章 結論與未來展望..........................................71 參考文獻.......................................................72

    [1] L. W. Sun, F. Van Meer, Y. Bailly, C. K. Yeung, “Design and Development of a Da Vinci Surgical System Simulator,” IEEE, International Conference on Mechatronics and Automation, pp. 1050-1055, 2007.
    [2] J. Dastur, A. Khawaja, “Robotic Arm Actuation with 7 DOF Using Haar Classifier Gesture Recognition,” IEEE, International Conference on Computer Engineering and Applications, vol. 1, pp. 27-29, 2010.
    [3] D. Tolani, A. Goswami and N. Badler, “Real-time inverse kinematics techniques for anthropomorphic limbs,” Graph. Models, vol. 62, pp. 353-388, 2000.
    [4] D. E. Whitney, “The mathematics of coordinated control prosthetic arm and manipulators,” Trans. ASME J. Dyn. Syst., Meas. Control, vol. 94, pp. 303-309, 1972.
    [5] De Lope, R. Gonzalez-Careaga and T. Zarraonandia, “Inverse kinematics of humanoid robots using artificial neural networks,” in Proc. Int. Workshop Comput. Aided Syst. Theory, pp. 216-218, 2003.
    [6] H. F. Fauadi, M. S. Jumali, “Modeling and simulation of programmable universal machine for assembly (PUMA) industrial robot for automotive-related assembly process,” IEEE, International Symposium on Information Technology, vol. 3, pp. 1-5, 2008.
    [7] R. Behrens, C. Küchler, T. Förster and N. Elkmann, “Kinematics analysis of a 3-DOF joint for a novel hyper-redundant robot arm,” IEEE, International Conference on Robotics and Automation, pp. 3224-3229, 2011.
    [8] H. P. Huang, Y. T. Chen, R. J. Wang and M. K. Chi, “Development of the multi-axis control platform for robot arm,” IEEE, Proceedings of Annual Conference, pp. 2326-2331, 2010.
    [9] M. Tarokh and M. Kim, “Inverse Kinematics of 7-DOF Robots and Limbs by Decomposition and Approximation,” IEEE, Transactions on Robotics, vol. 94, pp. 591-600, 2007.
    [10] J. Q. Gan, E. Oyama, E. M. Rosales, H. Hu, “A Complete Analytical Solution to the Inverse Kinematics of the Pioneer2 Robotic Arm,” J. of Robotica, vol. 23, pp. 123-129, 2005.
    [11] D. H. Song and S. Jung, “Geometrical analysis of inverse kinematics solutions and fuzzy control of humanoid robot arm under kinematics constraints,” IEEE, International Conference on Mechatronics and Automation, pp. 1178-1183, 2007.
    [12] G. W. Collins, The Foundations of Celestial Mechanics, Pachart Foundation dba Pachart Publishing House, 2004.
    [13] J.M. Selig, “Active versus passive transformations in robotics,” IEEE, Robotics & Automation Magazine, vol. 13, pp. 79-84, 2006.
    [14] P. I. Corke, “A Simple and Systematic Approach to Assigning Denavit–Hartenberg Parameters,” IEEE, Transactions on Robotics, vol.23, pp. 590-594, 2007.
    [15] H. Zhuang, Z.S. Roth and F. Hamano, “A complete and parametrically continuous kinematic model for robot manipulators,” IEEE, Transactions on Robotics and Automation, vol. 8, pp. 451-463, 1992.
    [16] M.F. Robinette, R. Manseur, “Robot-Draw, an Internet-based visualization tool for robotics education,” IEEE, Transactions on Education, vol. 44, pp. 29-34, 2001.
    [17] J. Chen, K. Venkataraman, D. Bakin, B. Rodricks, R. Gravelle, P. Rao, and Y. Ni, “Digital Camera Imaging System Simulation,” IEEE, Transactions on Electron Devices, vol. 56, pp. 2496-2505, 2009.
    [18] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Second Edition, Prentice Hall, 2002.
    [19] S. Ghosal, R. Mehrotra, “Detection of composite edges,” IEEE, Transactions on Image Processing, vol. 3, pp. 14-25, 1994.
    [20] S. Konishi, A. L. Yuille, J. M. Coughlan and S. C. Zhu, “Statistical edge detection: learning and evaluating edge cues,” IEEE, Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 57-74, 2003.
    [21] J. Canny, “A computational approach to edge detection, ” IEEE, Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 679-698, Nov 1986.
    [22] P. Bao, L. Zhang and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE, Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1485-1490, 2005.
    [23] P. Maragos, “Differential morphology and image processing,” IEEE, Transactions on Image Processing, vol.5, pp. 922-937, 1996.
    [24] Su Chen, R. M. Haralick, “Recursive erosion, dilation, opening, and closing transforms,” IEEE, Transactions on Image Processing, vol. 4, pp. 335-345, 1995.
    [25] J. Y. Gil, R. Kimmel, “Efficient dilation, erosion, opening, and closing algorithms,” IEEE, Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 1606-1617, 2002.
    [26] 洪維恩 編著,「Matlab 7 程式設計」,旗標出版股份有限公司,中華民國95年。
    [27] 繆紹綱 編著,「數位影像處理:運用matlab」,台灣東華書局股份有限公司,中華民國94年。

    下載圖示
    QR CODE