簡易檢索 / 詳目顯示

研究生: 李亞倫
Ya-Lun Li
論文名稱: 超薄鐵銥合金的成分比例與結構研究
Investigations of the compositional ratio and structure for ultrathin FeIr alloy
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 237
中文關鍵詞: 合金表面結構成分比例
英文關鍵詞: Fe, Ir, alloy, surface structure, compositional ratio
論文種類: 學術論文
相關次數: 點閱:118下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究鐵超薄膜在銥(111)基底上的成長模式、表面結構、化學偏移及合金成分比例。樣品製備與實驗均在超高真空環境下進行,並透過低能量電子繞射與歐傑電子能譜進行實驗觀測。在室溫300 K鐵超薄膜的成長方面,我們首先以歐傑電子能譜觀察一系列不同厚度之鐵薄膜,發現鐵薄膜在銥單晶上的化學偏移與塊材電負度所預期的結果有相反的趨勢。當鐵薄膜厚度超過2 ML時,其L1M1M2歐傑電子動能隨厚度增加而下降,銥N1N2N7歐傑電子動能隨厚度增加而上升,介面效應仍然明顯;厚度超過4 ML時,鐵L1M1M2歐傑電子動能變化趨於平緩,介面效應減弱,此時樣品的化學狀態以塊材鐵為主。從室溫300 K鐵超薄膜成長之低能量電子繞射實驗結果發現,當鐵薄膜厚度超過5.8 ML時,鐵原子主要是以bcc(110)在fcc(111)上的Kurdjumov-Sachs (KS)模式進行磊晶;當厚度小於1.8 ML時,鐵原子則以基底fcc(111)的方式進行磊晶。鐵超薄膜樣品加熱退火至800 K時,我們從歐傑電子能譜的強度分析可以得到穩定的鐵銥成分比例為1:3;化學偏移的分析發現銥N1N2N7歐傑電子動能比起乾淨銥單晶有下降的趨勢,因此排除鐵原子退吸附的可能;在低能量電子繞射實驗結果中,電子入射動能120 eV時可以發現清楚的(2×2)亮點。由以上三個實驗結果我們推測鐵銥形成規則合金FeIr3,最後透過氬離子濺射實驗進行深度分析,發現實驗所得之濺射效率與FeIr3模型的計算結果相差3%,顯示鐵銥確實形成規則合金FeIr3。另一方面,在低能量電子繞射實驗結果中,電子入射動能75 eV時,可以發現鐵銥合金表面上存在有鐵的兩種結構:bcc(110) KS與bcc(111) (3/2×3/2)R20°。當鐵超薄膜樣品厚度大於5.8 ML時,此兩種結構會同時存在於加熱退火後的FeIr3合金表面;當厚度小於1.8 ML時,合金表面將只剩下bcc(111)結構。

    The study of Fe/Ir(111) system was discussed in this thesis. The growth mode, surface structure, chemical shift and the proportion of alloy composition was investigated using the low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Sample preparation and experiments were carried out under ultrahigh vacuum condition. For the growth of ultrathin iron films at room temperature (300 K), at first we explored a series of different thickness of iron films by Auger electron spectroscopy. We found that the trend of chemical shift between iron film and a Ir(111) substrate is opposite to the trend of electronegativity between iron and iridium bulk. When the thickness of iron film is between 2 and 4 ML, the kinetic energy of Fe L1M1M2 Auger electron decreases and that of Ir N1N2N7 Auger electron increases with the thickness increased. It showed that the interface effect is still evident. When the thickness of iron film exceeds 4 ML, the change of the kinetic energy of Fe L1M1M2 Auger electron goes flatten. It showed the weakening interface effect and the chemical state of the sample based on iron bulk state. From LEED experiments, when the thickness of iron film exceeds 5.8 ML, the arrangement of iron atoms is mainly the Kurdjumov-Sachs (KS) orientation corresponding to epitaxial growth of bcc(110) on fcc(111). When the thickness of iron film is less than 1.8 ML, the arrangement of iron atoms is mainly pseudomorphic growth.
    When the sample of Fe/Ir(111) is annealed to 800 K, the intensity from the Auger electron spectroscopy analysis of iron and iridium shows a stable composition ratio of 1:3. The chemical shift analysis shows that the kinetic energy of Ir N1N2N7 Auger electron is less than that of clean Ir(111) thus excluding the possibility of the desorption of iron atoms. The incident electron of LEED where the kinetic energy is 120 eV can be used to resolve the clear (2×2) diffraction pattern. From the above three experiment results, we infer that the formation of ordered FeIr3 alloy. From the sputtering depth profiling measurements, the sputter efficiencies fall within 3% of the value of the theoretical calculation from the FeIr3 model. On the other hand, the incident electron of LEED with kinetic energy of 75 eV can be used to observe the two structures of iron which present on the surface of FeIr3 alloy: bcc(110) KS and bcc (111) (3/2×3/2) R20°. When the thickness of iron film is greater than 5.8 ML, two structures were observed after FeIr3 alloy formation. When the thickness of iron film is less than 1.8 ML, only bcc (111) structure exists on the FeIr3 surface.

    致謝...........................................i 摘要...........................................iii Abstract.......................................iv 縮寫表.........................................v 目錄...........................................vii 圖表目錄.......................................x 第一章 緒論....................................1 第二章 基本原理................................3 2.1 材料表面結構分析............................3 2.1.1 表面的定義................................3 2.1.2 晶體結構與表面結構........................4 2.1.3 二維倒晶格................................13 2.2 表面薄膜成長理論............................14 2.2.1 薄膜厚度的定義............................14 2.2.2 磊晶成長模式..............................14 2.2.3 合金與表面合金............................17 2.2.4 異種晶格磊晶..............................20 2.3 材料表面化學狀態............................23 2.3.1 電負度與化學偏移..........................23 第三章 儀器設置與實驗原理......................27 3.1 超高真空系統................................27 3.1.1 真空概論..................................27 3.1.2 真空材料與封合............................29 3.1.3 超高真空系統裝置..........................32 3.1.4 破真空與恢復真空..........................43 3.2 樣品的製備..................................47 3.2.1 樣品基材..................................47 3.2.2 樣品座....................................47 3.2.3 樣品清潔..................................48 3.2.4 超薄膜樣品的製備..........................49 3.3 歐傑電子能譜................................51 3.3.1 歐傑電子產生機制..........................51 3.3.2 歐傑電子能譜儀的設置......................54 3.3.3 歐傑電子能譜的分析........................56 3.4 低能量電子繞射..............................65 3.4.1 低能量電子繞射原理........................65 3.4.2 低能量電子繞射儀的設置....................69 3.4.3 低能量電子繞射亮點的分析..................70 3.5 表面磁光柯爾效應............................72 3.5.1 表面磁光柯爾效應理論......................72 3.5.2 表面磁光柯爾效應儀器設置..................74 3.5.3 表面磁光柯爾效應的分析....................80 3.6 電腦軟體數據處理............................81 第四章 實驗結果與討論..........................85 4.1 鐵薄膜在Ir(111)上的成長分析.................85 4.1.1 樣品表面的清潔............................85 結論............................................97 4.1.2 鐵鍍率與膜厚校正..........................99 實驗一..........................................100 實驗二..........................................102 實驗三..........................................105 實驗一至三討論..................................107 實驗四..........................................110 實驗四討論......................................112 實驗五..........................................113 實驗五討論......................................116 結論............................................121 4.1.3 鐵在Ir(111)上磊晶的化學偏移...............124 結論............................................127 4.2 鐵薄膜在Ir(111)上的加熱分析.................128 4.2.1 鐵銥合金之成分分析........................129 實驗六..........................................129 實驗七..........................................131 實驗八..........................................133 實驗六至八討論..................................135 結論............................................140 4.2.2 鐵銥合金之化學偏移........................141 結論............................................144 4.2.3 鐵銥合金之sputter深度分析.................145 結論............................................151 4.3 鐵薄膜在Ir(111)上的LEED分析.................152 4.3.1 Ir(111)的LEED分析.........................152 結論............................................155 4.3.2 鐵銥合金的結構............................158 實驗九..........................................159 實驗十..........................................164 實驗十一........................................168 實驗九至十一討論................................172 結論............................................178 第五章 結論....................................179 參考資料.......................................183 附錄一 Ir(111) LEED各級繞射亮點................189 附錄二 Ir(111)之三重對稱性.....................191 附錄三 9.6 ML Fe/Ir(111) 加熱LEED圖............194 附錄四 5.6 ML Fe/Ir(111) 加熱LEED圖............210 附錄五 1.76 ML Fe/Ir(111) 加熱LEED圖...........223 附錄六 用Mathematica計算反函數近似值...........234 附錄七 Fe燈絲易斷解決辦法......................237

    [1] 何慧瑩, 國立臺灣師範大學碩士論文, (1998).
    [2] R. Wood, Y. Hsu and M. Schultz, Perpendicular Magnetic Recording Technology, Hitachi Global Storage Technologies, (2007).
    [3] G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, 2nd ed., VCH, Weinheim (1985).
    [4] 陳裕善, 國立中正大學碩士論文, (2005).
    [5] G.R. Harp, D. Weller, T.A. Rabedeau, R.F.C. Farrow and M.F. Toney, Phys. Rev. Lett., 71, 2493 (1993).
    [6] C.P. Luo and D.J. Sellmyer, IEEE Trans. Magn., 31, 2764 (1995).
    [7] T. Manago, H. Kuramochi and H. Akinaga, J. Appl. Phys., 97, 023907 (2005).
    [8] C.S. Shern, J.S. Tsay, H.Y. Her, Y.E. Wu and R.H. Chen, Surf. Sci. Lett., 429, L497 (1999).
    [9] W.B. Zeper and F.J.A.M. Greidanus, J. Appl. Phys., 65, 497 (1989).
    [10] C.H. Lee, H. He and W.Vavara, Phys. Rev. Lett., 62, 653 (1989).
    [11] D. Pescia, G. Zampieri and G.L. Bona, Phys. Rev. Lett., 58, 933 (1987).
    [12] N.C. Koon and B.T. Jonker, Phys. Rev. Lett., 59, 2463 (1987).
    [13] Y.J. Chen, M.H. Kuo and C.S. Shern, Appl. Phys. Lett., 93, 012503 (2008).
    [14] Y.J. Chen, E.J. Hwang and C.S. Shern, J. Appl. Phys., 103, 07B516 (2008).
    [15] Y.J. Chen, H.Y. Ho, C.C. Tseng and C.S. Shern, Surf. Sci., 601, 4334 (2007).
    [16] B. Hardrat, A. Al-Zubi, P. Ferriani, S. Blugel, G. Bihlmayer and S. Heinze, Phys. Rev. B., 79, 094411 (2009).
    [17] K.v. Bergmann, S. Heinze, M. Bode, E.Y. Vedmedenko, G. Bihlmayer, S. Blugel and R. Wiesendanger, Phys. Rev. Lett., 96, 167203 (2006).
    [18] K.v. Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel and R. Wiesendanger, New J. Phys., 9, 396 (2007).
    [19] S. Andrieu, M.F. Ravet, O. Lenoble, V. Dupuis, M. Piecuch, S. Pizzini, F. Baudelet and A. Fontaine, Europhys. Lett., 18, 529 (1992).
    [20] W.L. O’Brien and B.P. Tonner, J. Vac. Sci. Technol. A, 13, 1544 (1994).
    [21] S. Andrieu, M. Piecuch and J.F. Bobo, Phys. Rev. B., 46, 4909 (1992).
    [22] C.Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New Caledonia (2005).
    [23] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Son, Inc., New York (1994).
    [24] M. Prutton, Surface Physics, Oxford University Press, USA (1987).
    [25] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, New York (1978).
    [26] Schaffer, Saxena, Antolovich, Sanders and Warner, The Science and Design of Engineering Materials, Irwin, (1995).
    [27] Close-packing of spheres, Wikipedia, http://en.wikipedia.org/wiki/Close-packing (2008)
    [28] S.C. Wang and G. Ehrlich, Phys. Rev. Lett., 62, 2297 (1989).
    [29] K.Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov and M. Katayama, Surface science: an introduction, Springer, New York (2003). pp. 197.
    [30] C. Argile and G.E. Rhead, Surf. Sci. Rep., 10, 277 (1989).
    [31] 聶亨芸, 國立清華大學碩士論文, (2002).
    [32] D.K. Cheng, Field and wave Electromagnetics 2/e, 3rd ed., Addison-Wesley, New York (1989).
    [33] 薛增泉, 吳全德 and 李浩, 薄膜物理, 電子工業出版社, 大陸 (1991).
    [34] E. Bauer, Appl. Surf. Sci., 11-12, 479 (1982).
    [35] E. Bauer and J.H.v.d. Merwe, Phys. Rev. B., 33, 3657 (1985).
    [36] H.L. Skriver and N.M. Rosengaard, Phys. Rev. B., 46, 7157 (1992).
    [37] L. Vitos, A.V. Ruban, H.L. Skriver and J. Kollar, Surf. Sci., 411, 186 (1998).
    [38] B.W. Dodson, Phys. Rev. B., 36, 6288 (1987).
    [39] Y. Chen and J. Washburn, Phys. Rev. Lett., 77, 4046 (1996).
    [40] 陳燿榮, 國立臺灣師範大學博士論文, (2008).
    [41] 葉朝蒼, 合金狀態圖解, 徐氏基金會, (1978).
    [42] H. Okamoto, "Fe-Pt (Iron-Platinum)," in Phase Diagrams of Binary Iron Alloys, ASM International, Materials Park, OH, (1993). pp. 330-36.
    [43] H. Okamoto, Journal of Phase Equilibria and Diffusion, 25, 395 (2004).
    [44] L.J. Swartzendruber, Bulletin of Alloy Phase Diagrams 5, 48 (1984).
    [45] J.S. Tsay, Y.D. Yao and C.S. Shern, Phys. Rev. B., 58, 3609 (1998).
    [46] P. Beccat, Y. Gauthier, R. Baudoing-Savois and J.C. Bertolini, Surf. Sci., 238, 105 (1990).
    [47] C.W. Su, H.Y. Ho, C.S. Shern and R.H. Chen, Surf. Sci., 499, 103 (2002).
    [48] J. Shen, M. Klaua, P. Ohresser, H. Jenniches, J. Barthel, C.V. Mohan and J. Kirschner, Phys. Rev. B., 56, 11134 (1997).
    [49] B. An, L. Zhang, S. Fukuyama and K. Yokogawa, Phys. Rev. B., 79, 085406-085401 (2009).
    [50] IUPAC, Compendium of Chemical Terminology (the "Gold Book"), 2nd ed, Oxford, http://dx.doi.org/10.1351/goldbook (1997)
    [51] D.R. Lide, CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 90 ed., CRC Press, Boca Raton, Fla. (2009).
    [52] Wikipedia, Electronegativity, http://en.wikipedia.org/wiki/Electronegativity (2011)
    [53] D.I. Jerdev and B.E. Koel, Surf. Sci. Lett., 513, L391 (2002).
    [54] J.A. Rodriguez and D.W. Goodman, Science, 257, 897 (1992).
    [55] 國家實驗研究院儀器科技研究中心, 真空技術與應用, 全華圖書, 台灣 (2001).
    [56] 楊安邦, 真空技術講義.
    [57] A. Roth, Vacuum Technology, North-Holland, New York (1986).
    [58] 陳俊明, 國立臺灣師範大學碩士論文, (2007).
    [59] 李佳憲, 國立臺灣師範大學碩士論文, (2008).
    [60] 楊正旭, 私立輔仁大學碩士論文, (1999).
    [61] 張新政, 國立臺灣師範大學碩士論文, (2007).
    [62] 蘇青森, 真空技術精華, 五南圖書出版社, (2004).
    [63] 莊柏青, 國立中正大學碩士論文, (2006).
    [64] 張惟祐, 國立臺灣師範大學碩士論文, (2008).
    [65] J.C. Vickerman, Surface Analysis-The Principal Techniques, John Wiley & Sons, New York (2002).
    [66] 李彥龍, 私立東海大學碩士論文, (2003).
    [67] 鄭文源, 私立東海大學碩士論文, (2004).
    [68] UHV Evaporator EFM 3/4, Triple Evaporator EFM3T Instruction Manual, Omicorn Ltd., (2005).
    [69] UHV Evaporator EFM 3 Instruction Manual, Omicorn Ltd., (1999).
    [70] Sputter Ion Source User's Guide, Omicorn Ltd., (1997).
    [71] 王劭駒, 國立臺灣師範大學碩士論文, (2010).
    [72] 李奇暐, 國立中正大學碩士論文, (2006).
    [73] P.A. Freshney, Periodic Table Explorer, 1.7.1 (2009) from http://www.freshney.org/
    [74] 王坤池, 國立臺灣科技大學碩士論文, (2001).
    [75] 黃正宏, 私立東海大學碩士論文, (2004).
    [76] C.M. Comrie and W.H. Weinberg, J. Chem. Phys., 64, 250 (1976).
    [77] J.C. Vickerman and I.S. Gilmore, Surface Analysis-The Principal Techniques, 2nd ed., John Wiley & Sons Ltd, New York (2009).
    [78] L.E. Davis, N.C. Macdonald, P.W. Palmberg, G.E. Riach and R.E. Weber, Handbook of Auger electron spectroscopy, 2nd ed., Physical Electronics Industries Inc., Eden Prairie (1976).
    [79] J.A. Bearden and A.F. Burr, Rev. Mod. Phys., 39, 125 (1967).
    [80] M.P. Seah and W.A. Dench, Surf. Interf. Anal., 1, 2 (1979).
    [81] 邱彥霖, 私立東海大學碩士論文, (2005).
    [82] 汪建民 主編, 材料分析, 中國材料科學學會, (1998).
    [83] Operating Instructions Spectrometer Control Units, VG Microtech Ltd., (1985).
    [84] EA 125 Energy Analyser User's Guide, OMICRON Ltd., (2001).
    [85] M.P. Seah, Surf. Interf. Anal., 9, 85 (1986).
    [86] D. Briggs and M.P. Seah, Practical Surface Analysis, JOHN WILEY & SONS, New York (1983).
    [87] 陳福全, 國立臺灣師範大學碩士論文, (2002).
    [88] R. Shimizu, Jap. J. Appl. Phys., 22, 1631 (1983).
    [89] J.A.C. Bland and B. Heinrich, Ultrathin Magnetic structures I, Ch 2, Springer, New York, (2005).
    [90] S. Ichimura and R. Shimizu, Surf. Sci., 112, 386 (1981).
    [91] S. Ichimura, R. Shimizu and J.P. Langeron, Surf. Sci. Lett., 124, L49 (1983).
    [92] C.J. Powell, J. Electron Spectrosc., 47, 197 (1988).
    [93] A. Jablonski and H. Ebel, Surf. Interf. Anal., 11, 627 (1988).
    [94] A. Jablonski and C.J. Powell, Surf. Sci. Rep., 47, 33 (2002).
    [95] A. Jablonski, Surf. Interf. Anal., 15, 559 (1990).
    [96] C.J. Powell, Surf. Sci., 299-300, 34 (1994).
    [97] S. Tanuma, C.J. Powell and D.R. Penn, J. Vac. Sci. Technol. A, 8, 2213 (1990).
    [98] S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interf. Anal., 20, 77 (1993).
    [99] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Brooks Cole, Belmont (1976).
    [100] 陳信良, 國立臺灣師範大學碩士論文, (1997).
    [101] 周亞謙, 儀器總覽-表面分析儀器, 國科會精儀中心, (1998).
    [102] P.J. Jennings and S.M. Thurgate, Surf. Sci. Lett., 104, L210 (1981).
    [103] R. Carey and E.D. Isaac, Magnetic domains and techniques for their Observation, Academic press, New York (1966).
    [104] Z.Q. Qiu and S.D. Bader, Rev. Sci. Instrum., 71, 3 (2000).
    [105] S.D. Bader, J. Magn. Magn. Mater., 100, 440 (1991).
    [106] J. Zak, E.R. Moog, C. Liu and S.D. Bader, J. Magn .Magn. Mater., 89, 107 (1990).
    [107] Z.Q. Qiu and S.D. Bader, J. Magn .Magn. Mater., 200, 664 (1999).
    [108] 呂婉菁, 國立臺灣師範大學碩士論文, (1995).
    [109] E. Hecht, Optics, 4th ed., Addison Wesley, New York (2002).
    [110] OriginLab, FFT Filter Smoothing, http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/SignalProcessing/SmoothingAndFitting&pid=78
    [111] E.W. Weisstein, "Gibbs Phenomenon.", From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GibbsPhenomenon.html
    [112] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C: The art of scientific computing, Cambridge University Press, (1992).
    [113] Savitzky-Golay Methods, Casa Software Ltd., http://www.casaxps.com/release/release2312_/CasaXPS.HLP/SpectrumProcessing/SavitzkyGolay.htm (2006)
    [114] R.M. Lambert, W.H. Weinberg, C.M. Comrie and J.W. Linnett, Surf. Sci., 27, 653 (1971).
    [115] T.Y. Fu, Y.R. Tzeng and T.T. Tsong, Phys. Rev. B., 54, 5932 (1996).
    [116] J.S. Tsay, T. Mangen, R.-J. Linden and K. Wandelt, J. Vac. Sci. Technol. A, 19, 2217 (2001).
    [117] J.S. Tsay and Y.S. Chen, Surf. Sci., 600, 3555-3559 (2006).
    [118] W.F. Egelhoff and W.H. Weinberg, Surf. Sci., 61, 207 (1976).
    [119] R.M. Lambert and C.M. Comrie, Surf. Sci., 38, 197 (1973).
    [120] N.R. Gall, E.V. Rut'kov and A.Y. Tontegode, Physics of the Solid State, 46, 371 (2004).
    [121] G.E. Rhead, J. Vac. Sci. Technol., 13, 603 (1976).
    [122] J.S. Tsay and Y.D. Yao, Appl. Phys. Lett., 74, 1311 (1999).
    [123] Wikipedia, Iron Ore, http://en.wikipedia.org/wiki/Iron_ore (2011)
    [124] H.Y. Ho, Y.J. Chen, C.W. Su, R.H. Chen and C.S. Shern, J. Vac. Sci. Technol. A, 24, 1020 (2006).
    [125] D. Tian, H. Li, F. Jona and P.M. Marcus, Solid State Communication, 80, 783 (1991).

    下載圖示
    QR CODE