研究生: |
朱浤毅 Chu, Hung-Yi |
---|---|
論文名稱: |
不同跑步速度下運動學參數與跑步經濟性之相關性 The correlation between kinematic parameters and running economy at different running speeds |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
口試委員: |
相子元
Shiang, Tzyy-Yuang 王鶴森 Wang, Ho-Seng 何金山 Ho, Chin-Shan |
口試日期: | 2024/06/18 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 跑步策略 、跑步效率 、穿戴式裝置 |
英文關鍵詞: | Running strategy, running efficiency, wearable devices |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401343 |
論文種類: | 學術論文 |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前言:跑步經濟性 (Running Economy, RE) 是跑步表現的重要指標,在過去多數使用VO2max測試定義RE,而相關生物力學參數及跑步方式已被證明會影響RE,如:觸地時間、步頻、步幅、著地模式等,隨跑步速度改變生物力學參數也會有非線性的改變。其中觸地時間比 (Duty Factor, DF) 是近幾年被高度討論的議題,也經實驗證實與跑步表現、傷害具一定關聯性,但過去實驗仍有多處矛盾之結果,與跑步速度之間關聯性也較不明確。目的:本研究欲探究最大攝氧量跑速之55%、65%、75%、85%四種跑速下,跑步經濟性與生物力學參數之相關性,以及各項參數在不同跑速間差異,找到評估或檢測跑步經濟性的替代指標。方法:本實驗招募12位有從事規律運動之健康男性,先進行最大攝氧量測試,將該測試最大跑速的55%、65%、75%、85%作為第二部分測試強度,以皮爾森積差相關分析攝氧量與生物力學參數相關性,並比較不同速度下各項生理、生物力學參數差異性。結果:RE與DF未達顯著相關 (r= -.18 ,p= 0.23) ,其餘參數與RE相關係數均落在 (r = 0.32~0.64)之間,但在能量消耗與DF之間呈現 (r= -0.52) 中等程度相關。各項生理、生物力學參數不同速度之間均達顯著差異 (p < .05)。結論:在室內跑步機進行攝氧量或RE相關測試時,DF也許較不適合作為評估跑步經濟性的替代性指標,以單一運動學參數評估跑步經濟性較為合適。
Introduction: Running Economy (RE) is a critical indicator of running performance, traditionally defined by VO2max testing. Various biomechanical parameters and running techniques, such as ground contact time, step frequency, stride length, and foot strike pattern, have been shown to influence RE. These biomechanical parameters exhibit nonlinear changes with varying running speeds. The Duty Factor (DF), the ratio of ground contact time to the total stride time, has gained significant attention in recent years. Experimental evidence has demonstrated its association with running performance and injury risk. However, past studies have yielded conflicting results, and the relationship between DF and running speed remains unclear. Purpose: This study aims to investigate the correlation between running economy (RE) and biomechanical parameters at four different running speeds: 55%, 65%, 75%, and 85% of the maximum running speed associated with VO2max. Additionally, the study seeks to identify differences in these parameters across various running speeds to find alternative indicators for evaluating or assessing running economy. Methods: This experiment recruit 12 healthy males with regular exercise habits. Initially, subjects will undergo a VO2max test, and the running speeds corresponding to 55%, 65%, 75%, and 85% of their VO2max will be used as the intensities for the second part of the test. Pearson correlation analysis will be used to examine the relationship between oxygen consumption and biomechanical parameters, and differences in physiological and biomechanical parameters across various speeds will be compared. Results: No significant correlation was found between RE and DF (r= -0.18, p= 0.23). The correlation coefficients between RE and other parameters ranged from (r= 0.32 to 0.64). A moderate correlation was observed between energy expenditure and DF (r= -0.52). Significant differences in physiological and biomechanical parameters were found across different speeds (p<0.05). Conclusion: When conducting VO2max or RE-related tests on a treadmill, DF may not be suitable as an alternative indicator for assessing running economy. Evaluating RE based on a single kinematic parameter is more appropriate.
陳佑昇、黃冠勛、相子元 (2018)。使用穿戴裝置量化運動強度之可行性。運動表現期刊, 5(2), 51-58。doi:10.3966/240996512018120502001
相子元, 石又, & 何金山. (2012). 感測科技於運動健康科學之應用. 體育學報, 45(1), 1-12.
林信甫, & 莊泰源. (2003). 跑步經濟性及其相關影響因素探討. 中華體育季刊, 17(3), 53-60.
Billat, V. L., Demarle, A., Slawinski, J., Paiva, M. A. R. I. O., & Koralsztein, J. P. (2001). Physical and training characteristics of top-class marathon runners. Medicine and Science in Sports and Exercise, 33(12), 2089-2097.
Bonnaerens, S., Fiers, P., Galle, S., Aerts, P., Frederick, E. C., Kaneko, Y., & Derave, W. (2019). Grounded running reduces musculoskeletal loading. Medicine and Science in Sports and Exercise, 51(4), 708-715
Bonnaerens, S., Fiers, P., Galle, S., Derie, R., Aerts, P., Frederick, E., ... & Segers, V. (2021). Relationship between duty factor and external forces in slow recreational runners. BMJ Open Sport & Exercise Medicine, 7(1), e000996
Benson, L. C., Räisänen, A. M., Clermont, C. A., & Ferber, R. (2022). Is this the real life, or is this just laboratory? A scoping review of IMU-based running gait analysis. Sensors, 22(5), 1722
Barnes, K. R., & Kilding, A. E. (2015). Running economy: measurement, norms, and determining factors. Sports Medicine-open, 1, 1-15.
Conley, D. L., & Krahenbuhl, G. S. (1980). Running economy and distance running performance of highly trained athletes. MedSci Sports Exerc, 12(5), 357-60.
Da Rosa, R. G., Oliveira, H. B., Gomeñuka, N. A., Masiero, M. P. B., da Silva, E. S., Zanardi, A. P. J., ... & Peyré-Tartaruga, L. A. (2019). Landing-takeoff asymmetries applied to running mechanics: a new perspective for performance. Frontiers in Physiology, 10, 415.
Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology, 215(11), 1944-1956.
Day, E. M., Alcantara, R. S., McGeehan, M. A., Grabowski, A. M., & Hahn, M. E. (2021). Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running. Journal of Biomechanics, 119, 110323.
De Ruiter, C. J., Verdijk, P. W., Werker, W., Zuidema, M. J., & de Haan, A. (2014). Stride frequency in relation to oxygen consumption in experienced and novice runners. European Journal of Sport Science, 14(3), 251-258.
Di Prampero, P. E., Atchou, G., Brückner, J. C., & Moia, C. (1986). The energetics of endurance running. European Journal of Applied Physiology and Occupational Physiology, 55(3), 259-266.
Di Prampero, P. E., Capelli, C., Pagliaro, P., Antonutto, G., Girardis, M., Zamparo, P., & Soule, R. G. (1993). Energetics of best performances in middle-distance running. Journal of Applied Physiology, 74(5), 2318-2324.
Fadillioglu, C., Möhler, F., Reuter, M., & Stein, T. (2022). Changes in key biomechanical parameters according to the expertise level in runners at different running speeds. Bioengineering, 9(11), 616.
Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports medicine, 37, 316-319.
Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine and Science in Sports and Exercise, 49(7), 1412.
Fihl, P., & Moeslund, T. B. (2007). Classification of gait types based on the duty-factor. In 2007 IEEE Conference on Advanced Video and Signal Based Surveillance (pp. 318-323).
García-Pinillos, F., Cartón-Llorente, A., Jaén-Carrillo, D., Delgado-Floody, P., Carrasco-Alarcón, V., Martínez, C., & Roche-Seruendo, L. E. (2020). Does fatigue alter step characteristics and stiffness during running? Gait & Posture, 76, 259-263.
Gouwanda, D., & Senanayake, S. A. (2011). Identifying gait asymmetry using gyroscopes—A cross-correlation and Normalized Symmetry Index approach. Journal of Biomechanics, 44(5), 972-978.
Gómez-Molina, J., Ogueta-Alday, A., Stickley, C., Cámara, J., Cabrejas-Ugartondo, J., & García-López, J. (2017). Differences in spatiotemporal parameters between trained runners and untrained participants. The Journal of Strength & Conditioning Research, 31(8), 2169-2175.
Hoogkamer, W., Kram, R., & Arellano, C. J. (2017). How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Medicine, 47, 1739-1750.
Hulteen, R. M., Smith, J. J., Morgan, P. J., Barnett, L. M., Hallal, P. C., Colyvas, K., & Lubans, D. R. (2017). Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Preventive Medicine, 95, 14-25.
Hunter, I., & Smith, G. A. (2007). Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. European Journal of Applied Physiology, 100, 653-661.
Hanley, B., Tucker, C. B., Gallagher, L., Parelkar, P., Thomas, L., Crespo, R., & Price, R. J. (2022). Grizzlies and gazelles: Duty factor is an effective measure for categorizing running style in English Premier League soccer players. Frontiers in Sports and Active Living, 4, 939676.
Halvorsen, K., Eriksson, M., & Gullstrand, L. (2012). Acute effects of reducing vertical displacement and step frequency on running economy. The Journal of Strength & Conditioning Research, 26(8), 2065-2070.
Kaneko, M. (1990). Mechanics and energetics in running with special reference to efficiency. Journal of Biomechanics, 23, 57-63.
Kram, R., & Taylor, C. R. (1990). Energetics of running: a new perspective. Nature, 346(6281), 265-267.
Kyröläinen, H., Belli, A., & Komi, P. V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise, 33(8), 1330-1337.
Lopes, A. D., Hespanhol, L. C., Yeung, S. S., & Costa, L. O. P. (2012). What are the main running-related musculoskeletal injuries? A systematic review. Sports Medicine, 42, 891-905.
Lussiana, T., Patoz, A., Gindre, C., Mourot, L., & Hébert-Losier, K. (2019). The implications of time on the ground on running economy: less is not always better. Journal of Experimental Biology, 222(6), jeb192047.
Ju, H., Lee, M. S., Park, S. Y., Song, J. W., & Park, C. G. (2015). A pedestrian dead-reckoning system that considers the heel-strike and toe-off phases when using a foot-mounted IMU. Measurement Science and Technology, 27(1), 015702.
Morin, J. B., Samozino, P., Zameziati, K., & Belli, A. (2007). Effects of altered stride frequency and contact time on leg-spring behavior in human running. Journal of Biomechanics, 40(15), 3341-3348.
Morgan, D. W., & Daniels, J. T. (1994). Relationship between VO2max and the aerobic demand of running in elite distance runners. International Journal of Sports Medicine, 15(07), 426-429.
Moore, I. S. (2016). Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sports Medicine, 46(6), 793-807.
Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 655-661.
Nummela, A. T., Paavolainen, L. M., Sharwood, K. A., Lambert, M. I., Noakes, T. D., & Rusko, H. K. (2006). Neuromuscular factors determining 5 km running performance and running economy in well-trained athletes. European Journal of Applied Physiology, 97, 1-8.
Patoz, A., Lussiana, T., Thouvenot, A., Mourot, L., & Gindre, C. (2020). Duty factor reflects lower limb kinematics of running. Applied Sciences, 10(24), 8818.
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737-767.
Preece, S. J., Mason, D., & Bramah, C. (2016). The coordinated movement of the spine and pelvis during running. Human Movement Science, 45, 110-118.
Rodrigo-Carranza, V., González-Mohíno, F., Santos-Concejero, J., & González-Ravé, J. M. (2020). Influence of shoe mass on performance and running economy in trained runners. Frontiers in Physiology, 11, 573660.
Rodriguez-Barbero, S., Ravé, J. M. G., Santos-García, D. J., Rodrigo-Carranza, V., Santos-Concejero, J., & González-Mohíno, F. (2023). Effects of a regular endurance training program on running economy and biomechanics in runners. International Journal of Sports Medicine, 44(14), 1059-1066.
Slawinski, J., & Billat, V. (2004). Difference in mechanical and energy cost between highly, well and non trained runners. Medicine and Science in Sports and Exercise, 36(8), 1440-1446.
Santos-Concejero, J., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., Tam, N., & Gil, S. M. (2013). Differences in ground contact time explain the less efficient running economy in north African runners. Biology of Sport, 30(3), 181-187.
Sprager, S., & Juric, M. B. (2015). Inertial sensor-based gait recognition: A review. Sensors, 15(9), 22089-22127.
Shahabpoor, E., & Pavic, A. (2018). Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor. Journal of Biomechanics, 79, 181-190.
Shiang, T. Y., Hsieh, T. Y., Lee, Y. S., Wu, C. C., Yu, M. C., Mei, C. H., & Tai, I. H. (2016). Determine the foot strike pattern using inertial sensors. Journal of Sensors, 2016.
Strohrmann, C., Harms, H., Tröster, G., Hensler, S., & Müller, R. (2011, September). Out of the lab and into the woods: kinematic analysis in running using wearable sensors. In Proceedings of the 13th international conference on Ubiquitous computing (pp. 119-122).
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 465-485.
Swinnen, W., Mylle, I., Hoogkamer, W., & Vanwanseele, B. (2021). Changing Stride Frequency Alters Average Joint Power and Power Distributions during Ground Contact and Leg Swing in Running. Medicine and Science in Sports and Exercise, 53(10), 2111-2118.
Tan, T., Strout, Z. A., & Shull, P. B. (2020). Accurate impact loading rate estimation during running via a subject-independent convolutional neural network model and optimal IMU placement. IEEE Journal of Biomedical and Health Informatics, 25(4), 1215-1222.
Tartaruga, M. P., Brisswalter, J., Peyré-Tartaruga, L. A., Ávila, A. O. V., Alberton, C. L., Coertjens, M., ... & Kruel, L. F. M. (2012). The relationship between running economy and biomechanical variables in distance runners. Research Quarterly for Exercise and Sport, 83(3), 367-375.
Van Oeveren, B. T., de Ruiter, C. J., Beek, P. J., & van Dieën, J. H. (2024). The biomechanics of running and running styles: a synthesis. Sports Biomechanics, 23(4), 516-554.
Vanhoy, R. A. (2012). A Comparison of two different treadmill protocols in measuring maximal oxygen consumption in highly trained distance runners (Doctoral dissertation, University of North Carolina at Chapel Hill).
Van Hamme, T., Garofalo, G., Argones Rúa, E., Preuveneers, D., & Joosen, W. (2019). A systematic comparison of age and gender prediction on imu sensor-based gait traces. Sensors, 19(13), 2945.
Van den Berghe, P., Six, J., Gerlo, J., Leman, M., & De Clercq, D. (2019). Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds. Journal of Biomechanics, 86, 238-242.
Weyand, P. G., Sandell, R. F., Prime, D. N., & Bundle, M. W. (2010). The biological limits to running speed are imposed from the ground up. Journal of Applied Physiology, 108(4), 950-961.
Willwacher, S., Goetze, I., Fischer, K. M., & Brüggemann, G. P. (2016). The free moment in running and its relation to joint loading and injury risk. Footwear Science, 8(1), 1-11.
Young, F., Mason, R., Wall, C., Morris, R., Stuart, S., & Godfrey, A. (2022). Examination of a foot mounted IMU-based methodology for a running gait assessment. Frontiers in Sports and Active Living, 4, 956889.