簡易檢索 / 詳目顯示

研究生: 范瀞元
Fan, Jing-Yuan
論文名稱: 以雷射及堆疊結構技術於可撓性傷口酸鹼檢測元件之研究
Research of Laser and Stacked Structure Techniques on Flexible Devices for pH Monitoring on Wound Healing
指導教授: 張天立
Chang, Tien-Li
口試委員: 李青澔
Li, Ching-Hao
劉承揚
Liu, Cheng-Yang
鄧敦建
Teng, Tun-Chien
張天立
Chang, Tien-Li
口試日期: 2021/08/30
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 超快雷射導電奈米線微奈米結構檢測電極pH值檢測
英文關鍵詞: Ultrafast laser, Conductive nanowires, Micro- and nano-structures, Sensing electrode, pH Monitoring
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101772
論文種類: 學術論文
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氧化石墨烯(Graphene oxide, GO)薄膜覆蓋可撓性的聚醯亞胺(Polyimide, PI)基板,利用超快雷射(Ultrafast laser)產生還原氧化石墨烯(Reduced graphene oxide, rGO),製作環形指叉狀電極,上層感測區,覆蓋聚丙烯腈(Polyacrylonitrile, PAN)/聚苯胺(Polyaniline, PANI)之靜電紡絲,以製成pH酸鹼感測元件。本研究測試雷射不同的重疊率與單發能量,對應所產生rGO之寬度關係及量測產生rGO的導電性,選出最適當的加工參數。本研究最終選用掃描速度500 mm/s、雷射脈衝頻率300 kHz和能量密度為0.19 J/cm2,在雷射路徑一次製程,製作電極元件,其最低的電阻值為3230 Ω。在材料性質分析下,顯示雷射的能量能有效將GO的含氧官能基去除,還原成rGO。在電紡絲製程方面,電紡絲溶液會以PAN濃度為7 wt%和PANI濃度為1.4 wt%調配比例,在25000 V操作電壓下,產生的電紡絲平滑無珠鏈狀,平均線徑為498.36 nm,該結果經化學分析,證實可將PANI摻入電紡絲中。本研究在製作的設計檢測元件,量測電性響應於不同酸鹼值(pH = 2; 4; 6; 8; 10),顯示檢測溶液越呈酸性,且其瞬間電流響應越高。另外,在元件靈敏度(電阻變化量/初始電阻)對應pH值反應,顯示每pH量測值會下降6.37 %之線性關係,該其響應結果,可應用於傷口檢測。本研究實際檢測應用,是採以大鼠之傷口為目標檢體,量測3種處理傷口含原始、敷料1(含殼聚糖+奈米金粒子30 μM)及敷料2(含殼聚糖+奈米金粒子60 μM),分別量測第1天、第4天與第7天之電性變化,顯示在敷料2的傷口檢體pH值,會隨時間變化最小,有助於傷口復原。

    In this study, the ultrafast laser can induce the graphene oxide (GO) film into reduce graphene oxide (rGO) and form the circle interdigital electrode patterns on flexible polyimide (PI) substrate. Then, the formed polyacrylonitrile (PAN)/ polyaniline (PANI) electrospinning fibers were on the device of sensing region in detecting the hydrogen ion. To require processing parameters, the different overlap ratios and single plot energy of the laser can be tested to the width of the rGO and the conductivity. In this laser process technique, the scanning speed was 500 mm/s, the laser pulse frequency was 300 kHz, the energy density was 0.19 J/cm2, and the one-step fabrication in laser path was forming electrode device where the rGO device can be shown the lowest resistance value of 3230 Ω. Based on the material measurement, the laser energy can effectively remove the oxygen bonding on GO, showing the reduction of the GO to rGO. In the electrospinning process, the ratio of the electrospinning solution for PAN and PANI can be 7 wt% and 1.4 wt%, respectively. Under the operating voltage of 25000 V, the results of electrospinning filament indicated the smooth and bead-free with an average wire diameter of 498.36 nm. The material analysis demonstrated that PANI was incorporated into electrospinning fibers. The design of fabricating the device can measure the electrical response at the different testing samples, in which pH values were 2, 4, 6, 8, and 10, respectively. At the constant voltage of 1V, the current response to time was suitable to the acid solution when the higher the instantaneous current response was used. The sensitivity corresponds to the pH values, indicating a linear response of decreasing 6.37% per pH value for being applied in wound monitoring. For the practical detection in wound sensing applications, the wound of the rat can be used as the target specimen to measure three kinds of testing wounds, including original, dressing 1 (chitosan + Au nanoparticles 30 μM) and dressing 2 (chitosan + Au nanoparticles 60 μM) to measure the electrical response on day 1, day 4, and day 7 respectively. It revealed that the pH value of dressing 2 was the smallest change with the time, which is helpful for wound healing.

    第一章 緒論 1 1.1 研究背景與目的 1 1.2 傷口檢測 3 1.3 雷射製程簡介 5 1.4 奈米材料介紹 5 1.5 石墨烯介紹 8 第二章 文獻回顧 10 2.1 超快雷射加工簡介 10 2.2 超快雷射製程回顧 12 2.3 微型傷口感測元件回顧 14 2.4 導電奈米線回顧 16 2.4.1 靜電紡絲製作奈米線 17 2.4.2 靜電紡絲奈米線之微結構 17 2.5 PH感測元件回顧 22 2.5.1 靜電紡絲奈米線於pH感測 23 2.5.2 複合式材料於pH偵測 24 第三章 研究設計與方法 27 3.1 研究目的 27 3.2 元件感測電極設計 28 3.3 雷射製程製造 30 3.3.1 雷射加工剝離閥值 32 3.3.2 雷射加工之重疊率與脈衝數 33 3.4 導電靜電紡絲奈米線薄膜製作 35 3.5 PH感測元件檢測分析 38 3.6 實驗設備材料與量測檢體 39 第四章 結果與討論 42 4.1 石墨烯薄膜分析 42 4.1.1 石墨烯表面分析 42 4.1.2 石墨烯薄膜化學特性分析 47 4.2 石墨烯薄膜分析 52 4.2.1 雷射加工剝離閥值 52 4.3 靜電紡絲製作奈米線 56 4.3.1 靜電紡絲法製作奈米線之表面形貌 56 4.3.2 靜電紡絲奈米線於環形指叉狀結構 57 4.4 電性與PH溶液反應檢測分析 61 4.5 大鼠傷口滲液之電性響應 63 第五章 結論 67 5.1 結論 67 5.2未來與展望 68 參考文獻 69

    [1] Home Healthcare Market Size, Share & Trends Analysis Report By Equipment (Therapeutic, Diagnostic), By Services (Skilled Home Healthcare Services, Unskilled Home Healthcare Services), By Region, And Segment Forecasts, 2020 – 2027, https://www.grandviewresearch.com/industry-analysis/home-healthcare-industry
    [2] L. Manjakkal, S. Dervin, R. Dahiya, Flexible potentiometric pH sensors for wearable systems, RSC Advances, 10 (2020) 8594-8617.
    [3] M. Kurečič, T. Maver, N. Virant, A. Ojstršek, L. Gradišnik, S. Hribernik, M. Kolar, U. Maver, K. S. Kleinschek, A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine, Cellulose, 25 (2018) 7277-7297.
    [4] S. L. Percival, S. McCarty, J. A. Hunt, E. J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy, Wound Repair and Regeneration, 22 (2014) 174-186.
    [5] R. Rahimi, U. Brener, S. Chittiboyina, T. Soleimani, D. A. Detwiler, S. A. Lelièvre, B. Ziaie, Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection, Sensors and Actuators B: Chemical, 267 (2018) 198-207.
    [6] M. Talikowska, X. Fu, G. Lisak, Application of conducting polymers to wound care and skin tissue engineering: A review, Biosensors and Bioelectronics, 135 (2019) 50-63.
    [7] I. Esmail, H. Y. Sarvestani, J. Gholipour, B. Ashrafi, Engineered net shaping of alumina ceramics using picosecond laser, Optics & Laser Technology, 135 (2021) 106669.
    [8] R. K. Mishra, S. K. Ha, K. Verma, S. K. Tiwari, Recent progress in selected bio-nanomaterials and their engineering applications: An overview, Journal of Science: Advanced Materials and Devices, 3 (2018) 263-288.
    [9] S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H. Y. Kim, Electrospun nanofibers: New generation materials for advanced applications, Materials Science and Engineering: B, 217 (2017) 36-48.
    [10] H. Anwar, I. Arif, H. Mushtaq, Superparamagnetic composite-based GO/rGO for the multimode biomedical applications, Magnetic Nanoheterostructures, (2020) 103-120.
    [11] K. Tadyszak, J. K. Wychowaniec, J. Litowczenko, Biomedical applications of graphene-based structures, Nanomaterials, 8(11) (2018) 944.
    [12] Q. McCulloch, J. G. Gigax, P. Hosemann, Femtosecond Laser Ablation for Mesoscale Specimen Evaluation, The Journal of The Minerals, 72 (2020) 1694–1702.
    [13] E. Lundin, Small-scale laser cutting for stent, tube fabrication, The logo of The Tube & Pipe Journal (2015)
    [14] O. Haupt, F. Gäbler, Short-Pulse Q-Switched Lasers Enhance Precision Marking Applications, Photonics Media (2013).
    [15] S. F. Tseng, Picosecond laser micropatterning of graphene films for rapid heating chips, Applied Surface Science, 450 (2018) 380-386.
    [16] C. Zhu, D. Zhao, K. Wang, X. Dong, W. Duan, F. Wang, M. Gao, G. Zhang, Direct laser writing of graphene films from a polyether ether ketone precursor, Journal of Materials Science, 54 (2019) 4192–4201.
    [17] T. Guinovart,G. V. Ramírez, J. R. Windmiller, F. J. Andrade,J. Wang, Bandage-based wearable potentiometric sensor for monitoring wound pH, Electroanalysis, 26 (2014) 1345-1353.
    [18] R. Sheybani, A. Shukla, Highly sensitive label-free dual sensor array for rapid detection of wound bacteria, Biosensors and Bioelectronics, 92 (2017) 425-433.
    [19] M. Liu, X. P. Duan, Y. M. Li, D. P. Yang, Y. Z. Long, electrospun nanofibers for wound healing, Materials Science and Engineering: C, 76 (2017) 1413-1423.
    [20] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chemical Reviews, 119 (2019) 5298-5415.
    [21] J. Xue, J. Xie, W. Liu, Y. Xia, Electrospun nanofibers: new concepts, materials, and applications, Accounts of Chemical Research, 50 (2017) 1976-1987.
    [22] Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I. K. Yazdi, M. R. Dokmeci, A. Tamayol, A. Khademhosseini, B. Ziaie, A low-cost flexible pH sensor array for wound assessment, Sensors and Actuators B: Chemical, 229 (2016) 609-617.
    [23] Y. Li, Y. Mao, C. Xiao, X. Xu, X. Li, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, 10 (2020) 21-28.
    [24] P. M. Perillo, D. F. Rodríguez, Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes, Journal of Alloys and Compounds, 657 (2016) 765-769.
    [25] C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, X. Li, A. Cao, A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film, Applied Surface Science, 405 (2017) 405-411.
    [26] Laser Peak Fluence, Intensity and Peak Power (https://lidaris.com/glossary-2/fluence/).
    [27] M. Laha, Ultra-high-precision laser cutting-pulse length matters, Metal Forming Magazines, (2020).
    [28] T. L. Chang, Micromachining of microfluidic channels in glass by microjoule femtosecond laser pulses, Microelectronic Engineering, 110 (2013) 450-456.
    [29] T. L. Chang, Z. C. Chen, Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices, Applied Surface Science, 359 (2015) 543-549.
    [30] Y. Li, Y. Mao, C. Xiao, X. Xu, X. Li, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, 10 (2020) 21-28.
    [31] M. Bhattacharjee, M. Soni,P. Escobedo, R. Dahiya, PEDOT:PSS Microchannel-Based Highly Sensitive Stretchable Strain Sensor, Advanced Electronic Materials, 6 (2020) 2000445.
    [32] Buffer Reference Center (https://www.sigmaaldrich.com/TW/en/technical-documents/protocol/protein-biology/protein-concentration-and-buffer-exchange/buffer-reference-center#pH).
    [33] N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. K. Sharma, K. Sachdev, Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application, Microelectronic Engineering, 376 (2017) 1700006.
    [34] R. L. Razalli, M. M. Abdi, P. M. Tahir, A. Moradbak, Y. Sulaiman, L. Y. Heng, Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization, RSC Advances, 7 (2017) 25191-25198.
    [35] I. Karbownik, O. Rac-Rumijowska, M. Fiedot-Toboła, T. Rybicki, H. Teterycz, The Preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) Fibers, Materials, 12 (2019) 664.
    [36] M. Y. Hua, C. J. Chen, H. C. Chen, R. Y. Tsai, W. Cheng, C. L. Cheng, Y. C. Liu, Preparation of a Porous Composite Film for the Fabrication of a Hydrogen Peroxide Sensor, Applied Sensors, 11 (2011) 5873-5885.

    無法下載圖示 本全文未授權公開
    QR CODE