簡易檢索 / 詳目顯示

研究生: 黃聘聘
Huang, Pin-Pin
論文名稱: 以覆蓋氣-液-固相方法合成釩摻雜之二硫化鉬薄膜
A New Vanadium Doping Strategy of MoS2 through Capping-Vapor-Liquid-Solid
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
口試委員: 陳貴賢 林麗瓊 陳家俊 邱博文
口試日期: 2021/07/21
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 二硫化鉬釩摻雜二硫化鉬氣-液-固相大面積薄膜
英文關鍵詞: MoS2 thin film, V-doped MoS2, vapor-liquid-solid, centimeter-scale
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100784
論文種類: 學術論文
相關次數: 點閱:106下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料近年來被視為下一世代的半導體材料,有別於三維材料,
    二維材料能以單原子層結構穩定存在,並且具備良好的物性與電性,
    可縮小現有的場效電晶體體積,提高晶片效能;除此之外,二維材料
    也能做為新穎的替代能源材料,將二氧化碳轉化成碳氫化合物,並且
    可透過釩摻雜來提高催化效率,期望改善全球暖化問題。
    本實驗研究的二維材料為屬於過渡金屬二硫族化合物(TMDCs)中
    的二硫化鉬,並著重於合成釩摻雜之二硫化鉬的方法,二硫化鉬不僅
    可應用於光電元件,亦可做為觸媒材料,若想將二硫化鉬應用於工業
    上,則需要合成大面積且連續均勻的薄膜,故此研究使用創新的合成
    方法: 覆蓋氣-液-固態方法來製備釩參雜之二硫化鉬薄膜,首先在矽
    基板上沉積四層前驅物薄膜,依序為:三氧化鉬、五氧化二釩、氟化鈉、
    二氧化矽薄膜,二氧化矽薄膜做為覆蓋層及擴散膜,防止氧化釩蒸發
    消失跟控制氣體硫的擴散,對於釩摻雜是重要的一環,若沒有二氧化
    矽覆蓋層,釩將無法成功的摻雜進二硫化鉬中;在硫化過程中氧化鉬、
    氧化釩與氟化鈉先反應形成鹽類液體後,氣態硫再穿過二氧化矽覆蓋
    層來與鹽類液體反應,最後過飽和析出釩摻雜二硫化鉬薄膜;此方法
    因牽涉到鹽類液態反應,因此能合成高摻雜濃度的二硫化鉬薄膜。

    Transition metal dichalcogenides (TMDs) have attracted people’s
    attention due to their outstanding physical properties. Molybdenum
    disulfide (MoS 2 ) thin film has been particularly found unique applications
    in catalysis, optoelectronics, transistors, and energy storage. These
    applications demand a large-scale synthesis of MoS 2 thin film with uniform
    thickness and high crystallinity. Besides, dopants in two-dimensional
    dichalcogenides have a significant role in affecting electronic, mechanical,
    and interfacial properties. Controllable doping is desired for the intentional
    modification of such properties to enhance performance. Vanadium-doing
    could enhance MoS 2 conductivity and carrier concentration so that it can
    improve catalytic activity. In this report, a new capping vapor-liquid-solid
    (VLS) synthesis has been developed. Depositing MoO 3 , V 2 O 5 , NaF and
    SiO 2 on SiO 2 /Si wafer sequentially as a 4-layer precursor. Herein, SiO 2 acts
    as capping layer and diffusion membrane, which is critical for V-doping.
    During sulfurization, MoO 3 , V 2 O 5 and NaF will form Mo/V/Na salt liquid
    first. Then sulfur will diffuse through capping SiO 2 layer and dissolve in
    Na salt liquid. Finally, V-MoS 2 will oversaturated on the substrate. After
    that, HF etching process is used to remove capping SiO 2 layer and V-MoS 2
    will show on the centimeter-scale wafer.

    致謝 i 中文摘要 ii Abstract iii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 4 2-1 二維材料及TMDs介紹 4 2-2 二硫化鉬結構及特性 7 2-3 釩摻雜二硫化鉬介紹及應用 14 2-4 二硫化鉬合成方法 19 2-4-1 物理剝離法(Mechanical Exfoliation) 19 2-4-2 化學剝離法(Chemical Exfoliation) 20 2-4-3 常規化學氣相沉積法(Conventional Chemical Vapor Deposition) 20 2-4-4 兩步化學氣相沉積法(Two-step Chemical Vapor Deposition) 21 2-4-5 氣液固相合成法(Vapor-Liquid-Solid Growth) 22 2-5 釩摻雜二硫化鉬合成方法 24 2-6 覆蓋氣-液-固相合成法(Capping Vapor-Liquid-Solid) 26 2-7 實驗儀器介紹 28 2-7-1 電漿輔助原子層沉積法(Plasma Enhanced Atomic Layer Deposition,PEALD) 28 2-7-2 熱蒸鍍與電子束蒸鍍(Thermal Evaporation and E-beam Evaporation) 29 2-7-3 低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition,LPCVD) 31 2-8 量測儀器介紹: 32 2-8-1 光學顯微鏡(Optical microscope, OM) 32 2-8-2 拉曼光譜(Raman spectroscopy) 34 2-8-3 原子力顯微鏡(Atomic Force Microscope, AFM) 35 2-8-4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 37 2-8-5 能量色散X射線光譜儀(Energy Dispersive X-Ray Spectroscopy, EDS) 38 2-8-6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 39 2-8-7 選區電子繞射(Selected Area Electron Diffraction, SAED) 41 第三章 實驗方法 42 3-1 實驗流程圖 42 3-2 基板前處理 44 3-3 電漿輔助原子層氣相沉積法(Plasma-Enhanced Atomic Layer Deposition, PEALD) 44 3-4 熱蒸鍍(Thermal Evaporation) 45 3-5 電子束蒸鍍(E-beam Evaporation) 45 3-6 低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition, LPCVD) 46 3-7 氫氟酸蝕刻(HF etching) 48 第四章 結果與討論 49 4-1 氣-液-固相法二硫化鉬與釩摻雜二硫化鉬 49 4-2 覆蓋氣-液-固相法二硫化鉬製程參數最佳化 55 4-2-1 氟化納厚度效應 56 4-2-2 二氧化矽厚度效應 58 4-2-3 三氧化鉬厚度效應 60 4-2-4 溫度效應 63 4-2-5 壓力效應 69 4-2-6 氬氣及氫氣載流氣體流場 70 4-2-7最佳化二硫化鉬薄膜分析 76 4-3 釩摻雜二硫化鉬薄膜 77 4-3-1釩摻雜二硫化鉬薄膜分析 77 第五章 結論 87 參考文獻 88

    [1] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics, Nature Photonics 8(12) (2014) 899-907.
    [2] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry 5(4) (2013) 263-275.
    [3] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS 2 , Nano Lett 10(4) (2010) 1271-5.
    [4] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology 7(11) (2012) 699-712.
    [5] X. Li, H. Zhu, Two-dimensional MoS 2 : Properties, preparation, and applications, Journal of Materiomics 1(1) (2015) 33-44.
    [6] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS 2 , Nano letters 11(12) (2011) 5111-5116.
    [7] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2 , Physical Review B 83(24) (2011) 245213.
    [8] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R. Zahn, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2, Optics express 21(4) (2013) 4908-4916.
    [9] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single-and few-layer MoS 2 , ACS nano 4(5) (2010) 2695-2700.
    [10] G.L. Frey, R. Tenne, M.J. Matthews, M. Dresselhaus, G. Dresselhaus, Raman and resonance Raman investigation of MoS2 nanoparticles, Physical Review B 60(4) (1999) 2883.
    [11] A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS 2 and WS 2 , Physical Review B 84(15) (2011) 155413.
    [12] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS 2 : evolution of Raman 89 scattering, Advanced Functional Materials 22(7) (2012) 1385-1390.
    [13] A.G. Bagnall, W.Y. Liang, E.A. Marseglia, B. Welber, Raman studies of MoS 2 at high pressure, Physica B+C 99(1) (1980) 343-346.
    [14] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS 2 : a new direct-gap semiconductor, Physical review letters 105(13) (2010) 136805.
    [15] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS 2 nanocatalysts, science 317(5834) (2007) 100-102.
    [16] C. Tsai, F. Abild-Pedersen, J.K. Nørskov, Tuning the MoS 2 edge-site activity for hydrogen evolution via support interactions, Nano letters 14(3) (2014) 1381-1387.
    [17] A. Parija, Y.-H. Choi, Z. Liu, J.L. Andrews, L.R. De Jesus, S.C. Fakra, M. Al-Hashimi, J.D. Batteas, D. Prendergast, S. Banerjee, Mapping catalytically relevant edge electronic states of MoS 2 , ACS central science 4(4) (2018) 493-503.
    [18] S.S. Grønborg, N. Salazar, A. Bruix, J. Rodríguez-Fernández, S.D. Thomsen, B. Hammer, J.V. Lauritsen, Visualizing hydrogen-induced reshaping and edge activation in MoS 2 and Co-promoted MoS 2 catalyst clusters, Nature communications 9(1) (2018) 1-11.
    [19] A. Behranginia, M. Asadi, C. Liu, P. Yasaei, B. Kumar, P. Phillips, T. Foroozan, J.C. Waranius, K. Kim, J. Abiade, Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film, Chemistry of Materials 28(2) (2016) 549-555.
    [20] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.-p. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nature communications 7(1) (2016) 1-7.
    [21] A. Boochani, S. Veisi, The Vanadium Effect on Electronic and Optical Response of MoS 2 Graphene-Like: Using DFT, Silicon 10(6) (2018) 2855-2863.
    [22] W. Zhou, M. Chen, M. Guo, A. Hong, T. Yu, X. Luo, C. Yuan, W. Lei, S. Wang, Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS 2 catalyst, Nano letters 20(4) (2020) 2923-2930. 90
    [23] A.K. Singh, J. Prasad, U.P. Azad, A.K. Singh, R. Prakash, K. Singh, A. Srivastava, A.A. Alaferdov, S.A. Moshkalev, Vanadium doped few-layer ultrathin MoS 2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction, RSC advances 9(39) (2019) 22232-22239.
    [24] K. Novoselov, A.C. Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Physica Scripta 2012(T146) (2012) 014006.
    [25] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS 2 , ACS nano 5(12) (2011) 9934-9938.
    [26] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS 2 transistors, Nature nanotechnology 6(3) (2011) 147-150.
    [27] G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró, L. Tapasztó, Exfoliation of large-area transition metal chalcogenide single layers, Scientific reports 5(1) (2015) 1-5.
    [28] V. Pachauri, K. Kern, K. Balasubramanian, Chemically exfoliated large-area two-dimensional flakes of molybdenum disulfide for device applications, Apl Materials 1(3) (2013) 032102.
    [29] A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L.F. Drummy, R.A. Vaia, Mechanism for liquid phase exfoliation of MoS 2 , Chemistry of Materials 28(1) (2016) 337-348.
    [30] Y. Shi, H. Li, J.I. Wong, X. Zhang, Y. Wang, H. Song, H.Y. Yang, MoS 2 surface structure tailoring via carbonaceous promoter, Scientific reports 5(1) (2015) 1-12.
    [31] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nature materials 12(8) (2013) 754-759.
    [32] W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu, Y. Qiu, T. Hasan, P.Tan, P.A. Hu, Anisotropic growth of nonlayered CdS on MoS 2 monolayer for functional vertical heterostructures, Advanced Functional Materials 26(16) (2016) 2648-2654.
    [33] J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, A library of atomically thin metal chalcogenides, Nature 91 556(7701) (2018) 355-359.
    [34] D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O.L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, Large-area epitaxial monolayer MoS 2 , ACS nano 9(4) (2015) 4611-4620.
    [35] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Wafer-scale MoS 2 thin layers prepared by MoO 3 sulfurization, Nanoscale 4(20) (2012) 6637-6641.
    [36] J. Tao, J. Chai, X. Lu, L.M. Wong, T.I. Wong, J. Pan, Q. Xiong, D. Chi, S. Wang, Growth of wafer-scale MoS 2 monolayer by magnetron sputtering, Nanoscale 7(6) (2015) 2497-2503.
    [37] S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape evolution of monolayer MoS 2 crystals grown by chemical vapor deposition, Chemistry of Materials 26(22) (2014) 6371-6379.
    [38] a.R. Wagner, s.W. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth, Applied physics letters 4(5) (1964) 89-90.
    [39] C.S. Nanowires, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science 279 (1998) 208-208.
    [40] Y. Wu, P. Yang, Direct observation of vapor−liquid−solid nanowire growth, Journal of the American Chemical Society 123(13) (2001) 3165-3166.
    [41] S. Li, Y.-C. Lin, X.-Y. Liu, Z. Hu, J. Wu, H. Nakajima, S. Liu, T. Okazaki, W. Chen, T. Minari, Wafer-scale and deterministic patterned growth of monolayer MoS 2 via vapor–liquid–solid method, Nanoscale 11(34) (2019) 16122-16129.
    [42] S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, Q. Zhang, Vapour–liquid–solid growth of monolayer MoS 2 nanoribbons, Nature materials 17(6) (2018) 535-542.
    [43] J.-G. Song, G.H. Ryu, Y. Kim, W.J. Woo, K.Y. Ko, Y. Kim, C. Lee, I.-K. Oh, J. Park, Z. Lee, Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride, Nanotechnology 28(46) (2017) 465103.
    [44] M.-C. Chang, P.-H. Ho, M.-F. Tseng, F.-Y. Lin, C.-H. Hou, I.-K. Lin, H. Wang, P.-P. Huang, C.-H. Chiang, Y.-C. Yang, Fast growth of large-grain and continuous MoS 2 films through a self-capping vapor-92 liquid-solid method, Nature communications 11(1) (2020) 1-9.
    [45] What is Atomic Force Microscopy (AFM). https://www.nanoandmore.com/what-is-atomic-force-microscopy).
    [46] T. He, L. Xu, Y. Zhang, H. Huang, H. Jiao, High-quality vanadium-doped MoS 2 ultrathin nanosheets as an efficient ORR catalyst, New Journal of Chemistry 43(3) (2019) 1611-1616.
    [47] S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium, Applied Catalysis B: Environmental 254 (2019) 432-442.
    [48] L. Zhang, G. Wang, Y. Zhang, Z. Cao, Y. Wang, T. Cao, C. Wang, B. Cheng, W. Zhang, X. Wan, Tuning Electrical Conductance in Bilayer MoS2 through Defect-Mediated Interlayer Chemical Bonding, ACS nano 14(8) (2020) 10265-10275.
    [49] J. Zhang, Y. Zhu, M. Tebyetekerwa, D. Li, D. Liu, W. Lei, L. Wang, Y. Zhang, Y. Lu, Vanadium-Doped Monolayer MoS 2 with Tunable Optical Properties for Field-Effect Transistors, ACS Applied Nano Materials (2020).
    [50] K. Zhang, S. Feng, J. Wang, A. Azcatl, N. Lu, R. Addou, N. Wang, C. Zhou, J. Lerach, V. Bojan, Manganese doping of monolayer MoS2: the substrate is critical, Nano letters 15(10) (2015) 6586-6591.
    [51] J. Gao, Y.D. Kim, L. Liang, J.C. Idrobo, P. Chow, J. Tan, B. Li, L. Li, B.G. Sumpter, T.M. Lu, Transition‐metal substitution doping in synthetic atomically thin semiconductors, Advanced Materials 28(44) (2016) 9735-9743.
    [52] K. Zhang, B.M. Bersch, J. Joshi, R. Addou, C.R. Cormier, C. Zhang, K. Xu, N.C. Briggs, K. Wang, S. Subramanian, Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping, Advanced Functional Materials 28(16) (2018) 1706950.
    [53] B.J. O’Neill, D.H. Jackson, J. Lee, C. Canlas, P.C. Stair, C.L. Marshall, J.W. Elam, T.F. Kuech, J.A. Dumesic, G.W. Huber, Catalyst design with atomic layer deposition, Acs Catalysis 5(3) (2015) 1804-1825.
    [54] S.M. George, Atomic layer deposition: an overview, Chemical reviews 110(1) (2010) 111-131. [55] A. Bashir, T.I. Awan, A. Tehseen, M.B. Tahir, M. Ijaz, Chapter 3 - Interfaces and surfaces, in: T.I. Awan, A. Bashir, A. Tehseen (Eds.), Chemistry of Nanomaterials, Elsevier2020, pp. 51-87.
    [56] X. Zhang, K. Hoshino, Fundamentals of nano/microfabrication and scale effect, 2019, pp. 43-111.
    [57] H.O. Pierson, Handbook of chemical vapor deposition: principles, technology and applications, William Andrew1999.
    [58] D. Kopeliovich, Metallurgical Microscope. https://www.substech.com/dokuwiki/doku.php?id=metallurgical_microscope, 2012).
    [59] S. Lohumi, M.S. Kim, J. Qin, B.-K. Cho, Raman imaging from microscopy to macroscopy: quality and safety control of biological materials, TrAC Trends in Analytical Chemistry 93 (2017) 183-198.
    [60] 黃英碩, 掃描探針顯微術的原理及應用, 科儀新知 (144) (2005) 7-17.
    [61] XPS / ESCA. https://www.phi.com/surface-analysis-techniques/xps-esca.html).
    [62] Energy Dispersive X-ray Spectroscopy (EDS/EDX). https://www.particletechlabs.com/analytical-testing/particle-identification-speciation/energy-dispersive-x-ray-spectroscopy-eds-edx).
    [63] F. Krumeich, electron microscopy. https://www.microscopy.ethz.ch/downloads.htm, 2020)

    下載圖示
    QR CODE