簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Tsung-Han
論文名稱: 用計算化學方法研究 Nafion 修飾銅電極之 CO 耦合機制
Computational Study of CO Coupling Mechanisms on Nafion-Modified Copper Electrodes
指導教授: 蔡明剛
Tsai, Ming-Kang
口試委員: 蔡明剛
Tsai, Ming-Kang
張鈞智
Chang, Chun-Chih
葉丞豪
Yeh, Chen-Hao
口試日期: 2023/07/14
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: DFTCO2RR電化學修飾電極C-C耦合
英文關鍵詞: DFT, CO2RR, electrochemical, modified electrode, C-C coupling
研究方法: 主題分析比較研究現象分析理論模擬
DOI URL: http://doi.org/10.6345/NTNU202400104
論文種類: 學術論文
相關次數: 點閱:182下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討了全氟-1-戊烷磺酸鈉修飾的Cu(111)表面在Nafion等磺酸全氟聚合物修飾下的電化學電極,以模擬C-C耦合反應。通過分子動力學模擬,研究了不同濃度的全氟-1-戊烷磺酸鈉和不同水量對電極表面修飾的影響。結果顯示,高濃度的全氟-1-戊烷磺酸鈉可能導致部分分子在水層的作用下與電極表面接觸,但隨著濃度降低,這種情況得到改善。
    進一步使用密度泛函理論(DFT)模擬了電化學電極表面的OC-CO和OC-COH耦合反應。研究發現,質子化的*COH較容易與*CO進行耦合反應,且OC-CO耦合反應的能從1.87 eV降至OC-COH耦合反應的0.68 eV。但OC-COH耦合反應需要先經歷能為1.52 eV的*CO質子化反應,該反應可以通過偏壓驅動的質子轉移反應(PCET)實現。
    除此之外進行了真空電極表面*CO和*COH的擴散模擬,並研究了吸附物相遇方向對耦合反應的影響。結果顯示在真空電極表面*CO和*COH的擴散能皆很小,分別為0.001 eV和0.144 eV。當OH朝向*CO時,*CO可以輕易地靠近*COH,而當靠近的*COH發生轉向使得OH鍵朝向*CO的反向時,OC-COH耦合反應之能壘可以從0.73 eV下降至0.53 eV,但反應能卻從0.20 eV上升至0.29 eV。DOS和COOP分析表明與混層軌域能量和程度有關。
    本研究針對全氟-1-戊烷磺酸鈉修飾的電化學電極表面中的C-C耦合反應進行了深入的探討。研究結果揭示了修飾條件和反應機理之間的關係,為設計和優化磺酸全氟聚合物修飾的電化學電極提供了有價值的見解。這些發現對於促進有機合成反應和電催化領域的發展具有潛在的應用價值。

    Examining Cu(111) surface modified with Sodium perfluoro-1-pentanesulfonate (NaPFPS) alongside sulfonic acid perfluorinated polymers reveals insights into simulating C-C coupling reactions. Molecular dynamics simulations explored the impact of NaPFPS concentration and water content on electrode surface modification. Higher NaPFPS concentrations exhibited partial electrode contact, with improvements noted as concentrations decreased.
    Density functional theory (DFT) calculations simulated OC-CO and OC-COH coupling reactions on the modified surface. Protonated *COH readily coupled with *CO, with OC-CO coupling energy decreasing from 1.87 eV to 0.68 eV for OC-COH coupling. Prior *CO protonation (1.52 eV) facilitated the reaction via bias-driven proton-coupled electron transfer (PCET).
    Diffusion simulations of *CO and *COH on the gas/solid electrode interface investigated the impact of adsorbate encounter direction. Minimal diffusion energies were observed (0.001 eV for *CO, 0.144 eV for *COH). *CO easily approaches *COH when OH approaches, but when *COH reorients, reversing the OH bond's orientation toward *CO, the energy barrier for OC-COH coupling decreases from 0.73 eV to 0.53 eV, with the reaction energy increasing from 0.20 eV to 0.29 eV.
    This study provides insights into C-C coupling reactions on Cu(111) surfaces modified with NaPFPS. It elucidates the relationship between modification conditions and reaction mechanisms, aiding the design and optimization of electrochemical electrodes with sulfonic acid perfluorinated polymers. The findings have potential applications in electrocatalysis.

    第一章 緒論 1 1.1 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR) 1 1.2 金屬電極 2 1.3 氣體擴散電極(Gas Diffusion Electrode, GDE) 4 1.3.1 宏孔層(Macroporous Layer or Support, MPS) 5 1.3.2 微孔層(Microporous Layer, MPL) 5 第二章 計算化學方法 6 2.1 計算方法概述 6 2.2 分子力學計算(Molecular Mechanics, MM) 6 2.3 量子力學計算(Quantum Mechanics, QM) 8 2.3.1 特徵函數(Eigenfunction)與特徵向量 (Eigenvector) 9 2.3.2 薛丁格方程(Schrödinger equation) 11 2.3.3 波恩–歐本海默近似(Born-Oppenheimer approximation) 12 2.3.4 單電子近似(Single-electron approximation) 13 2.3.5 斯萊特行列式(Slater determinant) 15 2.3.6 原子軌域線性組合(Linear combination of atomic orbitals, LCAO) 16 2.3.7 哈特里-福克自洽場(Hartree-Fock Self Consistent Field method, HF-SCF ) 17 2.3.8 哈特里-福克方程式(Hartree-Fock equation) 18 2.3.9 密度泛函理論(Density Functional Theory, DFT) 21 2.3.10 交換關聯能(Exchange Correlation energy) 23 2.3.11 基底函數(Basis functions) 25 2.3.12 週期性模型(Periodic Boundary Condition, PBC) 26 2.3.13 倒易點陣(Reciprocal lattice) 27 2.3.14 布里淵區(Brillouin zone) 28 2.3.15 贋勢(Pseudopotential)與贋函數(Pseudo-wavefunction) 30 2.3.16 投影綴加波(Projector Augmented Wave method, PAW) 30 2.4 單點能計算 (Single Point calculation) 31 2.5 幾何結構優化 31 2.6 溶劑模型 31 2.7 分子動力學模擬(Molecular Dynamic simulation, MD) 33 2.8 過渡態理論(Transition State Theory, TST) 34 2.9 擾動彈簧模型(Nudged Elastic Band, NEB)與 (Climbing Image Nudged Elastic Band, CI-NEB) 35 2.10 態密度分析(Density Of State, DOS) 37 2.11 晶體重疊布居(Crystal Orbital Overlap Population) 38 2.12 質子耦合電子轉移反應(Proton Coupled Electron Transfer, PCET) 39 2.13 計算軟件包 40 2.13.1 Tinker 40 2.13.2 VASP 41 第三章 結果與討論 42 3.1 以第一原理模擬Nafion修飾銅電極表面之C-C耦合反應 42 3.1.1 計算方法設置 43 3.1.2 電極表面設計與修飾 44 3.1.3 修飾聚合物濃度效應 47 3.1.4 修飾聚合物-水相邊界建模 50 3.1.5 電化學電極表面*CO耦合反應模擬 52 3.1.6 吸附物擴散能力 54 3.1.7 真空下OC-COH耦合模擬 55 3.1.8 態密度分析成鍵差異 57 3.1.9 晶體重疊布居分析C-C成鍵強弱 58 3.1.10 OCC-OH旋轉之能量變化 59 3.1.11 電化學環境下OC-COH_out耦合模擬 59 3.1.12 反應路徑預測 60 第四章 總結 61 參考文獻 62

    The Greenhouse Effect. https://www.ces.fau.edu/nasa/module-2/how-greenhouse-effect-works.php (accessed 2023-06-21).
    Chu, J. Short-lived greenhouse gases cause centuries of sea-level rise. 2017. https://climate.nasa.gov/news/2533/short-lived-greenhouse-gases-cause-centuries-of-sea-level-rise/ (accessed 2023-06-21).
    Taalas, P. Climate Change, Disasters and Their Mitigation. 2022. https://www.un.org/en/un-chronicle/climate-change-disasters-and-their-mitigation (accessed 2023-06-21).
    Stephens, I. E. L.; Chan, K.; Bagger, A.; Boettcher, S. W.; Bonin, J.; Boutin, E.; Buckley, A. K.; Buonsanti, R.; Cave, E. R.; Chang, X.; et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 2022, 4 (4), 042003. DOI: 10.1088/2515-7655/ac7823.
    Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119 (12), 7610-7672. DOI: 10.1021/acs.chemrev.8b00705.
    Pei, Y.; Zhong, H.; Jin, F. A brief review of electrocatalytic reduction of CO2—Materials, reaction conditions, and devices. Energy Sci Eng 2021, 9 (7), 1012-1032. DOI: https://doi.org/10.1002/ese3.935.
    Chen, Q.; Tsiakaras, P.; Shen, P. Electrochemical Reduction of Carbon Dioxide: Recent Advances on Au-Based Nanocatalysts. Catalysts 2022, 12 (11), 1348.
    Lu, Q.; Jiao, F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29. DOI: 10.1016/j.nanoen.2016.04.009.
    Marcandalli, G.; Monteiro, M. C. O.; Goyal, A.; Koper, M. T. M. Electrolyte Effects on CO(2) Electrochemical Reduction to CO. Acc Chem Res 2022, 55 (14), 1900-1911. DOI: 10.1021/acs.accounts.2c00080 From NLM.
    Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta 1994, 39 (11), 1833-1839. DOI: https://doi.org/10.1016/0013-4686(94)85172-7.
    Exner, K. S. On the optimum binding energy for the hydrogen evolution reaction: How do experiments contribute? ELSA 2022, 2 (4), e2100101. DOI: https://doi.org/10.1002/elsa.202100101.
    El Sibai, A.; Rihko Struckmann, L. K.; Sundmacher, K. Model-based Optimal Sabatier Reactor Design for Power-to-Gas Applications. Energy Technology 2017, 5 (6), 911-921. DOI: https://doi.org/10.1002/ente.201600600.
    Pan, H.; Barile, C. J. Electrochemical CO2 reduction to methane with remarkably high Faradaic efficiency in the presence of a proton permeable membrane. Energy Environ. Sci. 2020, 13 (10), 3567-3578, 10.1039/D0EE02189J. DOI: 10.1039/D0EE02189J.
    Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 Reduction: A Classification Problem. ChemPhysChem 2017, 18 (22), 3266-3273. DOI: https://doi.org/10.1002/cphc.201700736.
    Verma, S.; Kim, B.; Jhong, H.-R. M.; Ma, S.; Kenis, P. J. A. A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. ChemSusChem 2016, 9 (15), 1972-1979. DOI: https://doi.org/10.1002/cssc.201600394.
    Lin, R.; Guo, J.; Li, X.; Patel, P.; Seifitokaldani, A. Electrochemical Reactors for CO2 Conversion. Catalysts 2020, 10 (5), 473.
    Wang, T.; Wang, Y.; Li, Y.; Li, C. The origins of catalytic selectivity for the electrochemical conversion of carbon dioxide to methanol. Nano Research 2023. DOI: 10.1007/s12274-023-5653-7.
    Ge, L.; Rabiee, H.; Li, M.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8 (3), 663-692. DOI: https://doi.org/10.1016/j.chempr.2021.12.002.
    Wang, X.; Tomon, C.; Bobrowski, T.; Wilde, P.; Junqueira, J. R. C.; Quast, T.; He, W.; Sikdar, N.; Weidner, J.; Schuhmann, W. Gaining the Freedom of Scalable Gas Diffusion Electrodes for the CO2 Reduction Reaction. ChemElectroChem 2022, 9 (21), e202200675. DOI: https://doi.org/10.1002/celc.202200675.
    Hernandez-Aldave, S.; Andreoli, E. Fundamentals of Gas Diffusion Electrodes and Electrolysers for Carbon Dioxide Utilisation: Challenges and Opportunities. In Catalysts, 2020; Vol. 10.
    Cabasso, I.; Yuan, Y.; Xu, X. gas diffusion electrodes based on mixtures of poly (vinylidene fluoride) and carbon. 1997.
    Macleod, E. N. Wet proofed conductive current collector for the electrochemical cells. United States 1980.
    Lim, C.; Wang, C. Y. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochimica Acta 2004, 49 (24), 4149-4156. DOI: https://doi.org/10.1016/j.electacta.2004.04.009.
    Rabiee, H.; Ge, L.; Zhang, X.; Hu, S.; Li, M.; Yuan, Z. Gas Diffusion Electrodes (GDEs) for Electrochemical Reduction of Carbon Dioxide, Carbon Monoxide, and Dinitrogen to Value-added Products: A Review. Energy Environ. Sci. 2021, 14. DOI: 10.1039/D0EE03756G.
    Barbault, F.; Maurel, F. Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin Drug Discov 2015, 10 (10), 1047-1057. DOI: 10.1517/17460441.2015.1076389 From NLM.
    Manathunga, M.; Götz, A. W.; Merz, K. M. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr. Opin. Struct. Biol. 2022, 75, 102417. DOI: https://doi.org/10.1016/j.sbi.2022.102417.
    Böselt, L.; Thürlemann, M.; Riniker, S. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems. J. Chem. Theory Comput. 2021, 17 (5), 2641-2658. DOI: 10.1021/acs.jctc.0c01112.
    Heinz, H.; Lin, T.-J.; Kishore Mishra, R.; Emami, F. S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29 (6), 1754-1765. DOI: 10.1021/la3038846.
    González, M. A. Force fields and molecular dynamics simulations. JDN 2011, 12, 169-200.
    Martin, M. G. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor–liquid coexistence curves and liquid densities. Fluid Phase Equilibria 2006, 248 (1), 50-55. DOI: https://doi.org/10.1016/j.fluid.2006.07.014.
    Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117 (19), 5179-5197. DOI: 10.1021/ja00124a002.
    Guo, Y. Introduction of the Amber force field. 2019.
    What is Density Functional Theory? In Density Functional Theory, 2009; pp 1-33.
    Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929, 34 (10), 1293-1322. DOI: 10.1103/PhysRev.34.1293.
    Lennard-Jones, J. E. The electronic structure of some diatomic molecules. Trans. Faraday Society 1929, 25 (0), 668-686, 10.1039/TF9292500668. DOI: 10.1039/TF9292500668.
    Sapirstein, J. Chapter 9 - Parity Violation. In The Journal of Chemical Physics, Schwerdtfeger, P. Ed.; Vol. 11; Elsevier, 2002; pp 468-522.
    David M. Hanson, E. H., Robert Sweeney, Theresa Julia Zielinski. The Self-Consistent Field Approximation (Hartree-Fock Method). https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Quantum_States_of_Atoms_and_Molecules_(Zielinksi_et_al)/09%3A_The_Electronic_States_of_the_Multielectron_Atoms/9.07%3A_The_Self-Consistent_Field_Approximation_(Hartree-Fock_Method) (accessed.
    Thomas, L. H. The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 1927, 23 (5), 542-548. DOI: 10.1017/S0305004100011683 From Cambridge University Press Cambridge Core.
    Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864-B871. DOI: 10.1103/PhysRev.136.B864.
    Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. 2022. DOI: 10.1002/anie.202205735.
    Goerigk, L. Chapter 6 - A Comprehensive Overview of the DFT-D3 London-Dispersion Correction. In Non-Covalent Interactions in Quantum Chemistry and Physics, Otero de la Roza, A., DiLabio, G. A. Eds.; Elsevier, 2017; pp 195-219.
    Najibi, A.; Goerigk, L. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. J. Comput. Chem. 2020, 41 (30), 2562-2572. DOI: https://doi.org/10.1002/jcc.26411.
    Boys, S. F. Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond. A 1950, A 200, 542-554. DOI: http://doi.org/10.1098/rspa.1950.0036.
    Wei, P. H. 基底函數 (Basis Functions). 2012. https://www.chem.ccu.edu.tw/~hu/Web_Lib/QC_Tutorial/basis.pdf (accessed 2023-06-24).
    Nuts and Bolts of DFT Calculations. In Density Functional Theory, 2009; pp 49-81.
    Wegener, T. Unit Cell, Primitive Cell and Wigner-Seitz Cell. 2014. https://www.physics-in-a-nutshell.com/article/5/unit-cell-primitive-cell-and-wigner-seitz-cell#bibliography (accessed 2023-06-24).
    Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Computational Materials Science 2017, 128, 140-184. DOI: https://doi.org/10.1016/j.commatsci.2016.10.015.
    Liu, J. c. VASPKIT能带图计算. 2019. https://blog.shishiruqi.com/2019/07/11/band2/ (accessed 2023-06-25).
    Fermi, E. Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali. Il Nuovo Cimento (1924-1942) 1934, 11 (3), 157-166. DOI: 10.1007/BF02959829.
    Hellmann, H. A New Approximation Method in the Problem of Many Electrons. J. Chem. Phys. 2004, 3 (1), 61-61. DOI: 10.1063/1.1749559 (acccessed 6/17/2023).
    Rostgaard, C. The Projector Augmented-wave Method. arXiv pre-print server 2009. DOI: None
    arxiv:0910.1921.
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953-17979. DOI: 10.1103/PhysRevB.50.17953.
    Chen, Y.; Krämer, A.; Charron, N. E.; Husic, B. E.; Clementi, C.; Noé, F. Machine learning implicit solvation for molecular dynamics. J. Chem. Phys. 2021, 155 (8). DOI: 10.1063/5.0059915 (acccessed 6/17/2023).
    Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput 2017, 13 (3), 1034-1043. DOI: 10.1021/acs.jctc.7b00169.
    Zipse, H. The Polarizable Continuum Model (PCM). https://web.archive.org/web/20110928112407/http://www.cup.uni-muenchen.de/oc/zipse/the-polarizable-continuum-model-pcm.html (accessed 2023-06-23).
    Li, P.; Huang, J.; Hu, Y.; Chen, S. Establishment of the Potential of Zero Charge of Metals in Aqueous Solutions: Different Faces of Water Revealed by Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. C 2021, 125 (7), 3972-3979. DOI: 10.1021/acs.jpcc.0c11089.
    Gissinger, J. R.; Jensen, B. D.; Wise, K. E. Chemical Reactions in Classical Molecular Dynamics. Polymer (Guildf) 2017, 128, 211-217. DOI: 10.1016/j.polymer.2017.09.038 From NLM.
    Shell, M. S. Classical semi-empirical force fields. 2022. https://sites.engineering.ucsb.edu/~shell/che210d/Classical_force_fields.pdf (accessed 2023-06-25).
    Salo-Ahen, O. M. H.; Alanko, I.; Bhadane, R.; Bonvin, A. M. J. J.; Honorato, R. V.; Hossain, S.; Juffer, A. H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A. S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021, 9 (1), 71.
    Piskulich, Z. A.; Mesele, O. O.; Thompson, W. H. Activation Energies and Beyond. J. Phys. Chem. A 2019, 123 (33), 7185-7194. DOI: 10.1021/acs.jpca.9b03967.
    Schlegel, H. B. Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. J. Comput. Chem. 2003, 24 (12), 1514-1527. DOI: https://doi.org/10.1002/jcc.10231.
    Liu, J. c. vasp-vtst计算过渡态--NEB方法. 2019. https://blog.shishiruqi.com/2019/08/19/cineb/ (accessed 2023-06-25).
    Sobereva. 过渡态、反应路径的计算方法及相关问题. 2009. http://sobereva.com/44 (accessed 2023-06-25).
    Tönsing, C.; Timmer, J.; Kreutz, C. Optimal Paths Between Parameter Estimates in Non-linear ODE Systems Using the Nudged Elastic Band Method. Front. Phys. 2019, 7, Original Research. DOI: 10.3389/fphy.2019.00149.
    Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113 (22), 9978-9985. DOI: 10.1063/1.1323224 (acccessed 6/20/2023).
    Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904. DOI: 10.1063/1.1329672 (acccessed 6/20/2023).
    Maskar, E.; Lamrani, A. F.; Belaiche, M.; Es-Smairi, A.; Khuili, M.; Al-Qaisi, S.; Vu, T. V.; Rai, D. P. Electronic, magnetic, optical and transport properties of wurtzite-GaN doped with rare earth (RE= Pm, Sm, and Eu): First principles approach. Surf. Interfaces 2021, 24, 101051. DOI: https://doi.org/10.1016/j.surfin.2021.101051.
    Laghzaoui, S.; Lamrani, A. F.; Laamara, R. A.; Maskar, E.; Tuxtamishev, B. Q.; Laref, A.; Rai, D. P. Electronic, magnetic, optical and thermoelectric properties of co-doped Sn(1-2x) Mn (x) A (x) O(2) (A = Mo, Tc): a first principles insight. RSC Adv 2022, 12 (44), 28451-28462. DOI: 10.1039/d2ra04499d From NLM.
    Hou, X.; Xie, Z.; Li, C.; Li, G.; Chen, Z. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne. Materials (Basel) 2018, 11 (2). DOI: 10.3390/ma11020188 From NLM.
    Reshak, A. H.; Azam, S. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6. J. Magn. Magn. Mater. 2014, 358-359, 16-22. DOI: https://doi.org/10.1016/j.jmmm.2014.01.034.
    Maimaiti, Y.; Nolan, M.; Elliott, S. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. PCCP 2014. DOI: 10.1039/C3CP53991A.
    Theory: From H2 to Data-Storage Alloys. 2018. http://www.cohp.de/ (accessed 2023-06-20).
    Liu, J. COOP和COHP简单原理. 2019. https://blog.shishiruqi.com/2019/04/22/cohp/ (accessed 2023-06-20).
    Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97 (33), 8617-8624. DOI: 10.1021/j100135a014.
    Huynh, M. H.; Meyer, T. J. Proton-coupled electron transfer. Chem Rev 2007, 107 (11), 5004-5064. DOI: 10.1021/cr0500030 From NLM.
    Tyburski, R.; Liu, T.; Glover, S. D.; Hammarström, L. Proton-Coupled Electron Transfer Guidelines, Fair and Square. J. Am. Chem. Soc. 2021, 143 (2), 560-576. DOI: 10.1021/jacs.0c09106.
    Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chemical Science 2013, 4 (7), 2710-2723, 10.1039/C3SC50205H. DOI: 10.1039/C3SC50205H.
    Mayer, J. M. Bonds over Electrons: Proton Coupled Electron Transfer at Solid–Solution Interfaces. J. Am. Chem. Soc. 2023, 145 (13), 7050-7064. DOI: 10.1021/jacs.2c10212.
    Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagardère, L.; Schnieders, M. J.; Piquemal, J.-P.; Ren, P.; Ponder, J. W. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput 2018, 14 (10), 5273-5289. DOI: 10.1021/acs.jctc.8b00529.
    Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A. Liquid–Solid Boundaries Dominate Activity of CO2 Reduction on Gas-Diffusion Electrodes. ACS Catalysis 2020, 10 (23), 14093-14106. DOI: 10.1021/acscatal.0c03319.
    Church. Del. firm installs fuel cell. The News Journal, 2006, B7.
    Jorgensen, W. L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110 (6), 1657-1666. DOI: 10.1021/ja00214a001.
    Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225-11236. DOI: 10.1021/ja9621760.
    Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 1999, 59 (11), 7413-7421. DOI: 10.1103/PhysRevB.59.7413.
    Chen, S.; Duan, Y. H.; Huang, B.; Hu, W.-C. Structural properties, phase stability, elastic properties and electronic structures of Cu–Ti intermetallics. Philos Mag 2015, 95, 1-19. DOI: 10.1080/14786435.2015.1091110.
    The Materials, P. Materials Data on Cu by Materials Project. 2020. DOI: 10.17188/1204433.
    Udin, H. Grain Boundary Effect in Surface Tension Measurement. JOM 1951, 3 (1), 63-63. DOI: 10.1007/BF03398958.
    Shirazy, M. R. S.; Blais, S.; Fréchette, L. G. Mechanism of wettability transition in copper metal foams: From superhydrophilic to hydrophobic. Appl. Surf. Sci. 2012, 258 (17), 6416-6424. DOI: https://doi.org/10.1016/j.apsusc.2012.03.052.
    Liao, C.-C.; Tsai, T.-H.; Chang, C.-C.; Tsai, M.-K. The use of plate-type electric force field for the explicit simulations of electrochemical CO dimerization on Cu(111) surface. Chem. Phys. 2023, 568, 111821. DOI: https://doi.org/10.1016/j.chemphys.2023.111821.
    Zhi, X.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Key to C2 production: selective C–C coupling for electrochemical CO2 reduction on copper alloy surfaces. Chem. Commun. 2021, 57 (75), 9526-9529, 10.1039/D1CC03796J. DOI: 10.1039/D1CC03796J.
    Yao, K.; Li, J.; Wang, H.; Lu, R.; Yang, X.; Luo, M.; Wang, N.; Wang, Z.; Liu, C.; Jing, T.; et al. Mechanistic Insights into OC–COH Coupling in CO2 Electroreduction on Fragmented Copper. J. Am. Chem. Soc. 2022, 144 (31), 14005-14011. DOI: 10.1021/jacs.2c01044.
    Qin, X.; Vegge, T.; Hansen, H. A. Cation-Coordinated Inner-Sphere CO2 Electroreduction at Au–Water Interfaces. J. Am. Chem. Soc. 2023, 145 (3), 1897-1905. DOI: 10.1021/jacs.2c11643.

    下載圖示
    QR CODE