簡易檢索 / 詳目顯示

研究生: 張庭綸
Chang, Ting-Lung
論文名稱: 設計思考融入機器人教學之行動研究-以START!智慧小車為例
An Action Research on Integrating Design Thinking Model into the Robots Education:The Lesson Plan of START!Smart Vehicle
指導教授: 張玉山
Chang, Yu-Shan
口試委員: 劉遠楨
Liu, Yuan-Chen
蕭顯勝
Hsiao, Hsien-Sheng
張玉山
Chang, Yu-Shan
口試日期: 2022/06/30
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 187
中文關鍵詞: 設計思考機器人教學科技素養行動研究
英文關鍵詞: Design Thinking, Robotics Education, Technological Literacy, Action Research
研究方法: 行動研究法
DOI URL: http://doi.org/10.6345/NTNU202200863
論文種類: 學術論文
相關次數: 點閱:237下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在應用設計思考融入於機器人教學,發展「START!智慧小車」教學方案,藉以探討融入設計思考的機器人教學課程設計與實施方式、分析融入設計思考的機器人教學課程會遭遇的困難與問題,以及探討融入設計思考的機器人教學課程對學生科技素養的影響,並根據研究結果研提相關建議。
    本研究採行動研究,以研究者任教的38位高中一年級學生為研究對象,進行16 節課,每節50分鐘的教學活動,課程實施中研究者藉由學習單、觀察紀錄、錄影、錄音、訪談紀錄及省思札記等方式,蒐集相關質性資料進行分析。
    本研究主要結論為:(1)以系統化的教學設計模式設計課程,並適當融入設計思考步驟;(2)融入設計思考的機器人教學課程實施宜強調提問,並提供足夠的實作教學示範;(3)課設計思考融入機器人教學的整套課程耗時,且進度易受學生先備知能影響;(4)設計思考融入機器人教學課程對學生科技素養中的科技知識、科技能力、科技技能及科技態度有正向影響。

    The purpose of the research was to integrate design thinking model into the robotics education and develop the lesson plan of “START!Smart Vehicle”. Through the research, the researcher explored the proper method to design a lesson of integrating design thinking model into the robotics education and analyzed the difficulties of integrating design thinking model into the robotics education. Also, the researcher explored how the lesson of integrating design thinking model into the robots education influenced students’ technological literacy. According to the results, the researcher made some suggestions.
    Action research was applied in this research process. The participants were 38 tenth-grade students. There were 16 periods of the lesson and each period was 50 minutes. Students’ worksheets, observations, video recordings, interview records and teaching-reflected diary were collected for qualitative analysis.
    The main results of this research were: (1) Teachers could use the instructional system design to develop the course, and integrate design thinking model properly. (2) When teaching the course, teachers could apply questioning strategies and provide enough demonstration of hands-on instruction. (3) Teaching the course of integrating design thinking model into the robotics education took lots of time, and the progress would be influenced by students’ prior knowledge. (4) The course of integrating design thinking model into the robotics education had a positive impact on students’ technology literacy such as technological knowledge, technology skills , technology competencies and attitudes toward technology.

    第一章 緒 論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 3 第三節 名詞解釋 4 第四節 研究範圍與限制 5 第二章 文獻探討 7 第一節 機器人教學 7 第二節 設計思考 18 第三節 科技素養 31 第三章 研究設計與實施 47 第一節 行動研究 47 第二節 研究流程 48 第三節 研究場域與參與者 51 第四節 課程設計 55 第五節 資料蒐集方法與研究工具 59 第六節 資料分析與處理 61 第七節 研究倫理 64 第四章 研究結果與討論 65 第一節 設計思考融入機器人教學實施歷程 65 第二節 設計思考融入機器人教學課程學習成果分析 93 第三節 研究發現與討論 123 第五章 結論與建議 131 第一節 結論 131 第二節 建議 132 參考文獻 135 一、中文部份 135 二、外文部份 141 附 錄 150 附錄一 課程教學方案 150 附錄二 設計思考學習單 165 附錄三 「START!智慧小車」學習單(一) 169 附錄四 「START!智慧小車」學習單(二) 174 附錄五 「START!智慧小車」學習單(三) 178 附錄六 「START!智慧小車」學習報告 180 附錄七 課堂觀察紀錄表 185 附錄八 教學省思紀錄表 186 附錄九 訪談大綱 187

    一、中文部份
    王玉蓮(2017)。設計思考法融入環境教育Scratch課程之設計探究。國立清華大學人力資源與數位學習科技研究所碩士論文,未出版,新竹市。
    王薪惠、林煥祥、洪瑞兒(2018)。臺灣公民科技素養、科學興趣及科學參與之探討。教育科學研究期刊,63(4),229-259。
    丰聚醫創(2018)。設計思考驅動創新:Netflix 案例。取自https://vide.hpx.tw/9216
    任宗浩(2018)。素養導向評量的界定與實踐。在課程協作與實踐第二輯(第二篇,頁75-82)。台北市:教育部。
    朱元楷、梁至中、蔡孟蓉(2020)。中小學教師將機器人融入教學的態度、信念、動機及與機器人教學內容知識間的關係。數位學習科技期刊,12(2),75-97。
    朱益賢(2006)。從科技素養到科技創造力。生活科技教育月刊,39(8),1。
    朱春林(2019)。跨域協同教學與設計思考之行動研究:以高等教育課程為例。雙溪教育論壇,8,23-48
    佘曉清、林煥祥(主編)(2017)。PISA 2015臺灣學生的表現。新北市:心理。
    何琦瑜、賓靜蓀、陳雅慧、林韋萱、張益勤、王韻齡(2014)。翻轉教育2.0:從美國到台灣:動手做,開啟真學習。臺北市:親子天下。
    李明杉(2010)。技專校院推展科技素養教育之研究。國立臺灣師範大學科技應用與人力資源發展學系博士論文,未出版,台北市
    李隆盛(1992)。技術的定義。載於張一蕃等,技術科學素養教育重點規劃。行政院國科會專題研究成果報告。臺北:國科會。
    李隆盛、楊秀全(2019)。範例引導學習與問題導向學習之教學策略對國小學生機器人程式學習的影響。數位學習科技期刊,11(4),77-104。
    李彦林、郭建新、胡蓉(2010)。工程訓練課程體系中機器人模塊教學改革。實驗科學與技術,8(5),132-134。
    李岳霞、陳柏維(譯)(2017)。IDEO著。教育工作者的設計思考實踐手冊。臺北市:親子天下。
    邱淑芬(2017)。設計思考教學課程對國中學生情緒創造力之影響。國立清華大學教育心理與諮商學系碩士在職專班碩士學位論文,未出版,新竹市。
    范信賢(2016)。核心素養與十二年國民基本教育課程綱要:導讀《國民核心素養:十二年國教課程改革的 DNA》。國家教育研究院教育脈動電子期刊,5,16-19。
    林志忠(1998)。科技素養教育的哲學分析。國立臺灣師範大學教育學系博士論文,未出版,台北市。
    林偉文(2011)。創意教學與創造力的培育-以「設計思考」為例。教育資料與研究雙月刊,100,67。
    林菁(2008)。資訊素養融入大學生主題探究之研究。教育資料與圖書館學,46(2),233-266。
    林菁、謝欣穎(2013)。資訊素養與閱讀策略融入國小四年級「我們的水族箱」主題探究:以Big6模式為例。圖書資訊學刊,11(1),95-130。
    林業盈(2015)。應用樂高機器人發展資優教育方案之教學實例分析與探討。資優教育季刊,137,33-44。
    吳向宸、林穀欽、李浩榕、李振發(2013)。機電整合應用與實習。新北市:新文京圖書。
    吳明隆(2001)。教育行動研究導論-理論與實務。臺北市:五南。
    吳莉君(譯)(2010)。T.Brown著。設計思考改造世界(Change by Design:How Design Thinking Transforms Organizations and Inspires Innovation)。台北市:聯經。
    胡淑華、蔡孟蓉(2019)。國中機器人STEAM跨領域課程發展研究:以彰化縣二水國中培龍計畫為例。數位學習科技期刊,11(4),51-75
    姚經政、林呈彥(2016)。STEM教育應用於機器人教學-以6E教學模式結合差異化教學。科技與人力教育季刊,3(1),53-75。
    姚經政(2017)。機器人教學對高中生工程設計表現影響之研究。國立台灣師範大學科技應用與人力資源發展學系碩士論文,未出版,台北市。
    洪國峰(2016)。國中生的科技素養測驗發展及其表現之研究。國立台灣師範大學科技應用與人力資源發展學系博士論文,台北市。
    徐毅穎(2011)。高中生科技素養與科技態度相關之研究。國立臺灣師範大學科技應用與人力資源發展學系博士論文,未出版,台北市
    徐宗林(2000)。生活預備的教育目的論。取自http://terms.naer.edu.tw/detail/1304207/
    張玉山(1992)。科技教育的哲學理念、變遷與趨勢。中學工藝教育,25(9),9-12。
    張玉山、張雅富、陳冠吟(2016)。Kolb經驗學習理論於國中機器人活動之教學應用。科技與人力教育季刊,2(4),1-16。
    張基成、陳怡靜(2018)。機器人跨領域STEM主題式統整課程與任務導向式教學的設計及評鑑。科學教育學刊,26(4),305-331。
    張復萌(2019)。十二年國教中七級生活科技課程綱要轉化書之研究。 。取自 https://www.grb.gov.tw/search/planDetail?id=12628730
    張復萌(2020)。生活科技素養導向的教學應著重哪些?。國家教育研究院電子報,194。取自https://epaper.naer.edu.tw/edm.php?eg_name=%E7%A0%94%E7%A9%B6%E7%B4%80%E8%A6%81&edm_no=194&content_no=3447
    張瓊穗、翁婉慈(2005)。以資訊大六之觀點來檢驗國小高年級學童資訊素養之研究--以台北市天母國小為例。國立臺北教育大學學報,18(2),297-322。
    翁瑞(2020)。設計思考活動中決策運用之策略。國立臺北科技大學工業設計系創新設計碩士論文,未出版,台北市。
    教育部(2022)。教育部跨領域設計思考人才培育計畫(苗圃計畫)。取自https://www.design-thinking.tw/about.html
    教育部(2018)。十二年國民基本教育科技領域課程綱要。台北市:教育部。
    陳育祥(2016)。透過設計思維的藝術教育-以科技部高瞻課程計畫課程為例。國家教育研究院教育脈動電子期刊,6,100-112
    陳怡靜、張基成(2015)。兩岸機器人教育的現況與發展。中等教育,66(3),37-59。
    陳璽宇(2020)。科技教育的測驗與評量之探討。科技與人力教育季刊,7(1),26-47
    連瑀琁、楊俊明、黃鼎豪(2019)。以同理貫穿於設計思考流程之探討-以明志科技大學大一設計思考課程為例。工業設計,139,60-65
    童瀞萱(2022)。運用科技接受模式探討國小學童科技素養與數位學習行為之關係:以Google Classroom為例。國立臺灣師範大學工業教育學系科技應用管理碩士在職專班論文,未出版,台北市
    彭慰(1995)。觀察法。取自https://terms.naer.edu.tw/detail/1679442/
    黃元彥、劉旨峰、林俊閎(2021)。108課綱科技領域素養導向課程之設計思考鷹架與學習情境安排:以樂高EV3 機器人學習活動為例。教育傳播與科技研究,126,21-38
    黃台珠(2012)。2012年科技與語文素養計畫─公民科技素養調查研究執行報告。高雄市:國立中山大學通識教育中心公民素養推動研究中心。
    黃雅雯(2019)。設計思考應用於幼兒園藝術教學之行動研究-以桌遊「卡卡頌」的運用為例。國立清華大學藝術與設計學系美勞教師碩士在職專班論文,未出版,新竹市。
    游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中學生科技態度量表之發展。高雄師大學報,19,69-83。
    葉倩文(2018)。運用設計思考提升國小六年級學生發現問題與社會關懷之行動研究。國立臺北教育大學教育學院教育學系碩士論文,未出版,台北市。
    費躍農、邱建、李衛民、李福明、王鑫、李商旭(2008)。早期工程體驗課程的設計與實踐。實驗技術與管理,25(12),13-16。
    楊仁興(2001)。國民小學教師科技及資訊素養基本能力之研究。花蓮師院學報,12,115-142。
    楊昌勳(2003)。全民的科技素養教育。生活科技教育, 36(3), 3-12。
    楊孟麗、謝水南(譯)(2017)。Fraenkel, F., Wallen, N., & Hyun, H. 著。教育研究法:研究設計實務。台北市:心理。
    臺北市民生國小(2010)。以ASSURE模式設計資訊科技融入國小自然科學教學之創新案例。取自 https://cirn.moe.edu.tw/Upload/BENCHMARK/1361/4453/%E8%87%BA%E5%8C%97%E5%B8%82%E6%B0%91%E7%94%9F%E5%9C%8B%E5%B0%8F--%E6%95%99%E5%AD%B8%E6%A8%A1%E5%BC%8F%E7%B0%A1%E4%BB%8B.pdf
    蔡清田(2000)。教育行動研究。臺北市:五南。
    蔡佩樺(2016)。運用設計思考提升國小四年級學童創造性問題解決能力之行動研究。國立臺北教育大學教育學院教育學系碩士論文,未出版,台北市。
    蔡俊彥(2015)。2015年臺灣公民科學素養概況。高雄市:國立中山大學通識教育中心公民素養推動研究中心。
    趙志揚、林永順、鄭郁霖、邱紹一(2011)。高級中學學生科技素養之調查研究。技術及職業教育學報,4(1),6。
    趙嘉浩、梁至中、蔡孟蓉(2017)。機器人課程教材鷹架對高中生未來關鍵學習能力的影響。數位學習科技期刊,9(3),95-114
    鄭志誠(2018)。如何落實108 課綱中「科技領域」的核心素養?--配合DFC挑戰活動是個選項。取自https://flipedu.parenting.com.tw/article/4661
    賴宛吟、郭睿駖、高宇宏(2020)。設計思考結合社會設計課程之教學與實踐—以泰山區地方文化加值設計為例。工業設計,142,59-63。
    羅靖姈(2021)。設計思考在課程教學上的困境及解決策略。臺灣教育評論月刊,10(12),82-86

    二、外文部份
    Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science & Technology Education, 6 (1), 63-71.
    Akagi, T., Fujimoto, S., Kuno, H., Araki, K., Yamada, S., & Dohta, S. (2015). Systematic educational program for tobotics and mechatronics engineering in OUS using robot competition. Procedia Computer Science, 76, 2-8.
    American Heritage Dictionary. (2012). The American heritage dictionary of the English language(5th ed.). New York: Random House.
    Astuti, A. P., Mawarsari, V. D., Purnomo, H., & Sediyono, E. (2020). The use of augmented reality-based learning media to develop the technology literacy of chemistry teachers in the 21st century. AIP Conference Proceedings 2215, Malang, Indonesia.
    Anderson, N., Adam, R., Taylor, P., Madden, D., Melles, G., Kuek, C., Wright, N., & Ewens, B. (2015). Design thinking frameworks as transformative cross-disciplinary pedagogy. Technical Report. Retrieved from https://www.researchgate.net/publication/ 272821060_Design_thinking_frameworks_as_transformative_cross-disciplinary_pedagogy. DOI: 10.13140/2.1.1068.8806
    Buhl, A., Schmidt-Keilich, M., Muster, V., Blazejewski, S., Schrader, U., Harrach, C., Schäfer, M., & Süßbauer, E. (2019). Design thinking for sustainability: why and how design thinking can foster sustainability-oriented innovation development. Journal of Cleaner Production, 231, 1248-1257,
    Brown, T. (2008). Design thinking. Harvard Business Review. Retrieved October 4, 2020, from https://readings.design/PDF /Tim%20Brown,%20Design%20Thinking.pdf
    Camacho, M. (2017). In conversation David Kelley: From design to design thinking at Stanford and IDEO. She Ji The Journal of Design Economics and Innovation, 2(1), 88-101. Retrieved October 4, 2020, from https://readings.design/PDF/Tim%20Brown,%20Design%20Thinking.pdf
    Çakır, R., Korkmaz, Ö., İdil, Ö., & Erdoğmuş, F. U. (2021). The effect of robotic coding education on preschoolers’ problem solving and creative thinking skills. Thinking Skills and Creativity, 40, 1-13.
    Casad, B. J., & Jawaharlal, M. (2012). Learning through guided discovery: An engaging approach to K-12 STEM education. In American Society for Engineering Education. American Society for Engineering Education.
    DeCoito, I., & Richardson, T. (2018). Information and technology literacy: concepts, methodologies, tools, and applications. Hershey, PA: IGI Global.
    Dewey, J. (1899). The school and society: Being three lectures. Chicago: The University of Chicago Press.
    Dewey, J. (1916). Democracy and education: An introduction to the philosophy ofeducation. New York: MacMillan
    Dinçer, S. (2018). Are preservice teachers really literate enough to integrate technology in their classroom practice? Determining the technology literacy level of preservice teachers. Education and Information Technologies, 23, 2699–2718.
    Dyrenfurth, M. J. (1991). Technological literacy synthesized. In M. J. Dyrenfurth, M. J., & Kozak, M. R. (Eds.), Technological literacy: council on techology teacher education 40th yearbook. Peoria, IL: Macmillan McGraw-Hill.
    Efthymiou, N., Filntisis, P. P., Koutras, P., Tsiami, A., Hadfield, J., Potamianos, G., & Maragos, P. (2022). ChildBot:Multi-robot perception and interaction with children. Robotics and Autonomous Systems, 150, 1-17.
    Garmire, E., & Pearson, G. (Eds.). (2006). Tech tally: Approaches to assessing technological literacy. Washington, DC: National Academies Press.
    Huang, Y. T., Liu, E. Z.-F., Lin, C. H., & Liou, P. Y. (2017). Developing and validating ahigh school version of the robotics motivatedstrategies for learning questionnaire. International Journal of Online Pedagogy and Course Design, 7(2), 20-34.
    Hyytinen, A. (2021). Shared problem solving and design thinking in entrepreneurship research. Journal of Business Venturing Insights, 16, 1-6.
    IDEO.org (2012). Structure of design thinking process. Retrieved from https://www.researchgate.net/figure/Structure-of-design-thinking-process-IDEOorg-2012-C-2012-IDEO-LLC-All-rights_fig2_325427842
    ITEA (2006). Technology literacy for all-A rationale and structure for the study of technology. Reston, VA: International Technology Education Association.
    Jäggle, G., Lammer, L., Hieber, H., & Vincze, M. (2019). Technological literacy through outreach with educational robotics. International Conference on Robotics in Education, 1023, 114-125.
    Kwek, S.H. (2011). Innovation in the classroom: Design thinking for 21st century learning. Retrieved from https://web.stanford.edu/group/redlab/cgibin/publications_resources.php.
    Kurtmollaiev, S., Pedersen, P., Fjuk, A., & Kvale, K. (2018). Developing managerial dynamic capabilities: A quasi-experimental field study of the effects of design thinking training. Academy of Management Learning & Education, 17(2), 184-202.
    Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43
    Lahiria, A., Cormicana, K., & Sampaiob, S. (2021). Design thinking: From products to projects. Procedia Computer Science, 181, 141-148.
    Lalonde, J. F., Hartley, C. P., & Nourbakhsh, I. (2006). Mobile robot programming in education. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference .
    Lawrence, A. O. (2018). Examining the perceived Nigerian universities lecturers technology literacy level using UNESCO competency framework. International Journal for Innovative Technology Integration in Education, 2(2), 24-33.
    Lowery, J. (2005). Information literacy and writing: Natural partners in the library media center. Knowledge Quest, 34(2), 13-15.
    Lynch, M., Kamovich, U., Longva, K. K., & Steinerta, M. (2019). Combining technology and entrepreneurial education through design thinking: Students' reflections on the learning process. Technological Forecasting & Social Change. Retrieved October 19, 2020, from https://doi.org/ 10.1016/j.techfore.2019.06.015.
    Magistretti, S., Ardito, L., & Petruzzelli, A. M. (2021). Framing the microfoundations of design thinking as a dynamic capability for innovation: reconciling theory and practice. Journal of Product Innovation Management, 38(6), 645-667.
    Maienschein, J. (1998). Scientific literacy. Science, 281(5379), 917.
    Malinverni, L., Valero, C., Schaper, M. M., & Cruz, I. G. (2021). Educational robotics as a boundary object: Towards a research agenda. International Journal of Child-Computer Interaction, 29, 1-13.
    Maria, H., Stevenson, M., Falloon, G., Bower, M., & Forbes, A. (2021). Young children’s design thinking skills in makerspaces. International Journal of Child-Computer Interaction, 27, 1-11.
    Maulinda, T. N., Nugraha, S., Hadina, N., & Megawati, E. (2021). Technology literacy education based PHP2D local wisdom program in Cicadas village Indonesia. Jurnal Pemberdayaan: Publikasi Hasil Pengabdian Kepada Masyarakat, 5(1), 59-64.
    McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education,14(1), 21-44.
    Miller, J. D. (2016). Civic scientific literacy in the United States in 2016. Retrieved from https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/NASA%20CSL%20in%202016%20Report_0_0.pdf
    Neathery, M. F. (1997). Elementary and secondary students’ perceptions181toward science and correlation with gender, ethnicity, ability, grade, and science achievement. Electronic Journal of ScienceEducation, 2(1). Retrieved from http://unr.edu/homepage/ jcannon/ejse/ejsev2n1.html
    Nasution, S. H. (2018). Pentingnya literasi teknologi bagi mahasiswa calon guru matematika. Jurnal Kajian Pembelajaran Matematika, 2(1), 14-18.
    National Science Foundation (1983). Educating Americans for the 21st centry.Washington. DC: National Science Foundation.
    Pearson, G., & Young, A. T. (Eds.). (2002). Technically speaking: Why all Americans need to know more about technology. Washington, DC: National Academy Press.
    Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129.
    Ranger, B. J., & Mantzavinou, A. (2018). Design thinking in development engineering education: A case study on creating prosthetic and assistive technologies for the developing world. Development Engineering, 3, 166-174.
    Rianti, S., Akhsan, H., & Ismet, I. (2020). Development modern physics digital handout based on technology literacy. Berkala Ilmiah Pendidikan Fisika, 8(1), 23-32.
    Sabol, E. (2007). Teaching information literacy to high school freshmen. Library Media Connection, 25(4), 36-38.
    Santoso, A., & Lestari, S (2019). The roles of technology literacy and technology integration to improve students’ teaching competencies. International Conference on Economics, Education, Business and Accounting, 2019, 243-256.
    Sabri, S., & Abdul Rahim, M. (2020). Integration of dick and carey design in string ensemble class instructional material design. International Journal of Innovation, Creativity and Change, 14(11), 359-388.
    Sapri, J., & Agustriana, N. (2018). The application of dick and carey learning design toward student’s independence and learning outcome. Advances in Social Science, Education and Humanities Research, 295, 218-222.
    Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 1-17.
    Smaldino, S. E., Russell, J. D., Heinich, R., & Molenda, M. (2005). Instructional media and technologies for learning (8th ed.). Uppe Saddle River, NJ: Prentice Hall.
    Torabi, N. (2020). Defining ‘Design Thinking’ - in theory, and action. Retrieved from https://medium.com/neemz-innovation/defining-design-thinking-in-theory-and-action-a998ab3a598a
    Triana, A. J., Gusdorf, R.E., Shah, K. P., & Horst, S. N. (2020). Technology literacy as a barrier to telehealth during COVID-19. Telemedicine and e-Health, 26(9), 1118-1119.
    Tsai, M. F. (2021). Exploration of students’ integrative skills developed in the design thinking of a Psychology course. Thinking Skills and Creativity, 41, 1-9.
    Vande Zande, R. (2007). Design education as community outreach and interdisciplinary study. Journal for Learning through the Arts, 3(1), 4-27.
    Vande Zande, R., Warnock, L., Nikoomanesh, B., & Van Dexter, K. (2015). The design process in the art classroom: Building problem-solving skills for life and careers. Art Education, 67(6), 20-27.
    Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37 (3), 212-227.
    Wells, A. (2013). The importance of design thinking for technological literacy: a phenomenological perspective. International Journal of Technology and Design Education volume, 23, 623-636.
    Wilson, M. (2010). Developments in robot applications for food manufacturing. Industrial Robot: An International Journal, 37(6), 498-502.
    Young, A. T., Cole, J. R., & Denton, D. (2002). Improving technological literacy. Issues in Science and Technology, 18(4).
    Yoo, J. (2015). Results and outlooks of robot education in republic of Korea. Procedia-Social and Behavioral Sciences, 176, 251-254.
    Yu, F., & Silva, E.R. (2021). Design for robot assembly:Challenges of online education. Procedia CIRP, 100, 482–487.
    Yalçın, V., & Erden, Ş. (2021). The effect of STEM activities prepared according to the design thinking model on preschool children's creativity and problem-solving skills. Thinking Skills and Creativity, 41, 1-14.
    Yuangga, K. D., Jasmani, J., & Sunarsi, D. (2018). The influence of technology determinism and technology literacy on student learning outcomes (On MA Daarul Hikmah Pamulang). Pinisi Discretion Review, 1(2), 23-30.

    下載圖示
    QR CODE