研究生: |
陳威廷 |
---|---|
論文名稱: |
4',6-Diamidino-2-phenylindole (DAPI)與[d(CGCAAATTTGCG)]2複合物 |
指導教授: |
黃文彰
Huang, Wen-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 複合物 、動力結構 |
英文關鍵詞: | DAPI, CGCAAATTTGCG |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DAPI全名為4’,6-diamidino-2-phenylindole,是一個重要的DNA鍵結藥物,這類的藥物能干擾DNA轉錄啟動子區域結構。過去研究指出,DAPI對DNA中富含AT鹼基對的序列位置,有相當高的鍵結親和力。而DAPI和DNA在AT鹼基對形成鍵結,阻擋了TBP與真核生物的TATA box位置結合。因而轉錄因子和無法和DNA於轉錄起始位置形成複合物,導致RNA 聚合酶 Ⅱ 無法辨識,致使轉錄作用無法起始。DAPI 因為其螢光特性,常常使用在生化或細胞化學的研究上當作染色劑,此高螢光的複合物,可用來當作DNA的探針。過去由分子足跡技術可知,DAPI對於兩個以上連續的AT鹼基對較容易鍵結,因此本實驗使用了雙股螺旋DNA序列d(CGCAAATTTGCG)2 ,藉由此一B-form 雙股螺旋DNA序列來觀察DAPI對DNA 之AT-rich區域鍵結,產生鍵結作用力的因子。本研究發現,DAPI鍵結在d(CGCAAATTTGCG)2的小凹槽,並以其indole(NH)官能基與DNA兩個對稱的T7分岔的氫鍵,而DAPI兩端amidino官能基,則會和DNA的A6產生氫鍵鍵結。此一複合物區域結構鍵結作用力的研究,可使吾人對TATA轉錄起始因子之鍵結位置的結構,有更進一步的瞭解。所得資訊也可應用在藥物設計上,藉以改善藥物結構與藥物對DNA鍵結位置的選擇性。
DAPI(4’,6-diamidino-2-phenylindole)is an important DNA-binding drugs that interferes with the activity of number of DNA transcription processing enzymes involved in regulatory and structural functions. Strong inhibitory activity of DAPI has been reported for RNA polymeraseⅡ and attributed to the high binding affinity of DAPI in the minor groove of AT-rich sequences. The strong DAPI-DNA interaction interferes with the binding of TBP (TATA-binding protein) to its consensus TATA box sequence, preventing formation of the transcription factors-DNA complex. This complex structure is required for RNA polymerase Ⅱ recognizes to initiate gene transcription. Traditionally, DAPI is used in biochemical and cytochemical studies as a specific fluorescent dye of DNA and chromosome. The special properties of DAPI–DNA can be used as a DNA probe of highly fluorescent complexes. It has been shown in footprinting experiments that DAPI will bind to two or more contiguous AT base pairs is covered when DAPI is bound. DAPI binds our d(CGCAAATTTGCG)2 in the minor groove of the dodecamer by forming a bifurcated hydrogen bond between its indole NH (imino proton) group and the two O2 of T7 in the central AAATTT region,where as two terminal amidinos form conventional hydrogen bonds with A6. Bifurcated or three-centered hydrogen bonds, in which the hydrogen atom is within bonding distance of two heteroatoms have been suggested to be present in selected small molecule structures with minor groove binding drugs. The detailed features of DAPI-d(CGCAAATTTGCG)2 complex revealed in this study can be used in designing a new drug of better selectivity.
Albert, F. G., Eckdahl, T. T., Fitzgerald, D. J. & Anderson, J. N. (1999) Biochemistry 38, 10135-10146.
Andy, C. W., Kim, S. G., Flynn, P. F., Chou, S. H., Orban, J. & Reid, B. R. (1992) Biochemistry 31, 3940-3946.
Aymami, J., Coll, M., Gijs, L., Jacques H., Rich, A. (1990) Biochemistry 87, 2526-2530.
Conte, M. R., Conn, G. L., Brown, T. & Lane, A. N. (1997) Nucleic Acids Res. 25, 2627-2634.
David, W. W., Farial, A. T., Henryk, J. B., Lucjan, S., David, W. B. (1989) J. Am. Chem. Soc. 111, 5008-5010.
David, W. W., Farial, A. T., Henryk, J. B., Robert, L. J. Keith, F., Roman, L. W., Lucjan, S. (1990) Biochemistry 29, 8452-8461.
Dickerson, R. E., Goodsell, D. & Kopka, M. L. (1996) J. Mol. Biol. 256, 108-125.
Edwards, K. J., Brown, D. G., Spink, N., Skelly, J. V. & Neidle, S. (1992) J. Mol. Biol. 226, 1161-1173.
Eriksson, S., Kim, S. K., Kubista, M. & Nordén, B. (1993) Biochemistry 32, 2987-2998.
Fitzgerald, D. J. & Anderson, J. N. (1999) Biological chemistry 38, 27128-27138
Ford, T. C., & Rickwood, D. (1984) Nucleic Acid Res. 12, 1219-1226.
Kim, H. K., Kim, J. M., Kim S. K., Rodger, A., Nordén, B. (1996) Biochemistry 35,1187-1194.
Kintanar, A., Klevit, R. E., Reid, B. R. (1987) Nucleic Acids Res. 14, 5845-5861.
Kubista, M., Åkerman, B., & Norden, B. (1987) Biochemistry 26, 4545-4553
Lan, T. & McLaughlin, L. W. (2001) J. Am. Chem. Soc. 123, 2064-2065.
Loontiens, F. G., McLaughlin, L. W., Diekmann, S., and Clegg, R. M. (1991) Biochemistry 30, 182-189.
Mikael, K., Bjorn, A., Bengt, N. (1987) Biochemistry 26, 4545-4553.
Nelson, J. W., & Tinoco, I. Jr. (1984) Biopolymers 23, 213-233.
Ohshima, K., Kang, S., Larson, J. E. & Wells, R. D. (1996) J. Biol. Chem. 28, 16784-16791.
Pelton, J. G. & Wemmer, D. E. (1990) J. Am. Chem. Soc. 112, 1393-1399.
Pilch, D. S., Xu, Z., Sun, Q., Lavoie, E. J., Liu, L. F., Breslauer, K. J. (1997) Biochemistry 94, 13565-13570.
Portugal, J., and Waring, M. J. (1987) Eur. J. Biochem. 167, 281-289.
Trotta, E., D’Ambrosio, E., Ravagnan, G., & Paci, M. (1995) Nucleic Acids Res. 23, 1333-1340.
Trotta, E., D’Ambrosio, E., Ravagnan, G., & Paci, M. (1996) J. Biol. Chem. 44, 27608-27614.
Trotta, E., D’Ambrosio, E., Grosso, N. D., Ravagnan, G., Cirilli, M., Paci, M. (1993) J. Biol. Chem. 6, 3944-3951.
Trotta, E. & Paci, M. (1998) Nucleic Acids Res. 26,4706-4710.
Trotta, E., Grosso, N. D., Erba, M., Paci, M. (2000) Biochemistry 39, 6799-6808.
Tanious, F. A., Veal, J. M., Buczak, H., Ratmeyer, L. S., Wilson, W. D. (1992) Biochemistry 31, 3103-3112.
Wilson, W. D., Tanious, F. A., Barton, H, J., Strekowski, L., & Boykin, D. W. (1989) J. Am. Chem. Soc. 111, 5008-5010.
Wilson, W. D., Tanious, F. A., Barton, H. J., Jones, R. L., Fox, K., Wydra, R. L., Strekowski, L. (1990) Biochemistry 29, 8452-8461.