簡易檢索 / 詳目顯示

研究生: 吳孟鑫
Wu, Meng-Hsin
論文名稱: (壹)探討胰島類澱粉蛋白序列位置一號離胺酸的角色 (貳)探討胡椒鹼及其衍生物對胰島類澱粉蛋白聚集的影響
(I) Exploring the Role of Lysine-1 Residue of Islet Amyloid polypeptide (II) Exploring the Effects of Piperine and Its Derivatives on Islet Amyloid Polypeptide Aggregation
指導教授: 杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 胰島類澱粉蛋白第二型糖尿病離胺酸蛋白質聚集黃酮類抑制劑胡椒鹼衍生物
英文關鍵詞: islet amyloid polypeptide, peptide aggregation, flavonoid inhibitors, lysine residue, Type 2 diabetes, aggregation modulators
DOI URL: http://doi.org/10.6345/NTNU202000851
論文種類: 學術論文
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主題一 探討胰島類澱粉蛋白序列位置一號離胺酸的角色
    胰島類澱粉蛋白(Islet amyloid polypeptide,IAPP)是由37個胺基酸所組成的胜肽荷爾蒙,其不正常堆積會誘導胰島β細胞喪失功能甚至凋亡,因此被認為與第二型糖尿病有相當重要的關聯。IAPP在人體內的聚集機制相當複雜,科學家尚未完全了解其聚集機制為何。IAPP的聚集傾向很容易受到序列改變而有明顯差異,即使只有改變其中一個胺基酸。在過去,許多研究提出了IAPP特定區域或是特定胺基酸位置對其聚集之重要性,然而在這些研究中鮮少指出IAPP第一號胺基酸離胺酸的影響。本實驗室先前的研究中探討IAPP經過醣化修飾後得到的最終醣化產物AGE-IAPP之聚集情形,發現AGE-IAPP聚集傾向較IAPP高許多,而且會誘導IAPP更快速的聚集。而AGE-IAPP與IAPP差異僅在第一號位的胺基酸為羧甲基離胺酸。
    為了能更了解IAPP第一號位離胺酸在IAPP聚集過程以及IAPP纖維的構型中所扮演的角色,我們額外設計了兩條IAPP突變體—K1E IAPP與K1Nle IAPP,它們分別是將第一號位的離胺酸換成麩胺酸與正亮胺酸。從硫磺素T動力學實驗中,我們發現帶負電或是不帶電的胺基酸側鏈會使IAPP單體之間有更高的聚集傾向。結合TEM、ATR-FTIR與CD實驗,我們也發現第一號位胺基酸的改變不會讓成熟纖維結構改變,但是會改變IAPP單體與纖維之間的動態平衡。除此之外,我們還測試了常見的IAPP聚集抑制劑應用於K1E IAPP與AGE-IAPP的聚集中,我們發現部分黃酮類抑制劑的抑制聚集機制可能需要離胺酸側鏈的胺基參與反應。總結上述,我們點出了IAPP第一號位也是參與IAPP聚集的一個非常重要的角色,其影響不容忽略。第一號位胺基酸若經由體內的修飾機制而改變其側鏈官能基,將有機會影響到用於降低類澱粉蛋白聚集藥物的效果。

    主題二 探討胡椒鹼及其衍生物對胰島類澱粉蛋白聚集的影響
    胰島類澱粉蛋白(Islet amyloid polypeptide,IAPP)是由37個胺基酸所組成的胜肽荷爾蒙,其不正常聚集是第二型糖尿病的病理特徵,許多細胞實驗已指出其聚集的過程或是形成的沉積物與β細胞質量減少甚至凋亡有很大關係。所以科學家致力於尋找影響IAPP聚集的小分子。過去專家認為IAPP聚集的過程所產生之寡聚體會和細胞膜產生交互作用而誘發細胞毒性,因此希望能透過藥物添加減少其聚集傾向,或是加快其聚集以跳過寡聚體生成的階段,形成較低細胞毒性的沉積物。然而可惜的是,IAPP本身聚集的機制並不清楚,加上過去眾多研究能影響IAPP聚集的小分子中,無法說明小分子影響聚集的機制,故尋找能針對IAPP影響其聚集的藥物是非常龐大的工程。
    近年來,薑黃素和胡椒鹼的組合藥物已被證明可減少第二型糖尿病患者的血糖和相關病症。薑黃素過去已被認為可以減少IAPP誘導的細胞毒性,然而尚未有人探討胡椒鹼對IAPP聚集的作用效果。本篇研究中發現胡椒鹼的水解產物胡椒酸具有加速IAPP聚集的功能,因此我們想深入了解甚麼是胡椒酸影響IAPP聚集的重要結構,故以胡椒鹼結構為基礎合成一系列衍生物,將衍生物添加進IAPP並以硫磺素T動力學實驗測試衍生物的影響。我們發現結構中必須要含有重要官能基如羧酸、苯環上的取代基應以疏水的取代基如亞甲基二氧基或甲氧基為主。結構中間的雙鍵數量也會影響到加速效果。本篇研究期望能為開發影響IAPP聚集的小分子藥物提供一個參考方向,並發展出能針對IAPP聚集的藥物應用於IAPP相關類澱粉變性症。

    主題一 探討胰島類澱粉蛋白序列位置一號離胺酸的角色
    Islet amyloid polypeptide (IAPP) is a peptide hormone consists of 37 amino acids. The abnormal deposition of IAPP, known as IAPP amyloid, in pancreas may induce β-cell dysfunction or cell apoptosis. Therefore, it is considered that there is a close relationship between amyloid formation of IAPP and type 2 diabetes. However, the mechanism of IAPP amyloid formation in human body has not been fully discovered. Different primary sequence of IAPP may affect their aggregation tendency. In the past, the influence of specific regions or certain residue has been examined in IAPP aggregation, but few studies have discussed the effect of lysine residue at position 1 of IAPP. In our previous study, we examined the impact of protein glycation of IAPP. Glycated IAPP, named AGE-IAPP, formed amyloid faster than normal IAPP and can enhance IAPP aggregation process. The only difference in sequence between IAPP and AGE-IAPP is the first residue which is carboxymethyllysine in AGE-IAPP.
    To gain more insight into the role of Lys 1 in kinetics of fibril formation and fibril morphology, we synthesized IAPP and three IAPP variants, K1E-IAPP, K1Nle-IAPP and AGE-IAPP. Lysine was mutated to glutamate and norleucine respectively for K1E IAPP and K1Nle IAPP. We found that the negative or neutral charged side chain at position 1 may induce higher aggregation propensity between monomers. We also found that the replacement of the first reside will not change the secondary structure of mature fibers, but may affect the monomer-fibril equilibrium state. Besides, we also tested some common IAPP aggregation inhibitors on K1E IAPP and AGE-IAPP. We found that some flavonoid inhibitors may first need to react with the lysine residue then exhibit their inhibitory effect. Our study emphasizes the importance of the lysine residue in regulating IAPP aggregation, and modifications on this residue may affect the inhibitory effect of some potential drugs in amyloidosis treatment.

    主題二 探討胡椒鹼及其衍生物對胰島類澱粉蛋白聚集的影響
    Unusual fibrillar accumulation of 37-residue peptide hormone islet amyloid polypeptide (IAPP) is a pathological hallmark of type 2 diabetes (T2D). Many biological evidences have shown that aggregation of IAPP is closely associated with mass reduction or apoptosis of β-cell in pancreas. A common strategy to prevent β-cell disorders is to inhibit the IAPP aggregation process by small molecular inhibitors. In contrast, threre is another fashion to deal with such problem by accelerating the aggregation process to reduce the formation of toxic oligomers. Unfortunately, the inhibition mechanism of some present inhibitors on IAPP aggregation is not clear, and it is a difficult task to find effective and specific molecules to modulate IAPP aggregation.
    In recent years, the usage of curcumin and piperine combination has been shown to reduce glycemia and related complications in T2D. Curcumin is thought to be capable of reducing amyloid-induced cytotoxicity. However, the effect of piperine on IAPP aggregation has yet been explored. In our research, we found the hydrolyzed product of piperine, piperic acid, may enhance IAPP aggregation. Therefore, piperine is used as a core stucuture and a series of derivatives have been synthesized to further understand the structure activity relationship of piperine in IAPP aggregation by using thioflavin T (ThT) assay. We found several essential characteristics, such as carboxylic acid, and the substituents on the benzene ring should mainly be hydrophobic. The number of double bonds in the center of the structure may also affect its accelerating effect. We expected to provide some information for the development of small molecule drugs that can affect IAPP aggregation.

    謝辭 i 目次 ii 中英文對照表 vi 表次 xvii 圖次 xviii 主題一 探討胰島類澱粉蛋白序列位置一號離胺酸的角色 1 摘要 2 Abstract 3 第一章 緒論 5 1.1 類澱粉蛋白與疾病的關聯 5 1.2 類澱粉蛋白纖維結構與聚集機制 7 1.3 IAPP與第二型糖尿病之關聯 10 1.4 IAPP的聚集機制與結構探討 12 1.5 IAPP胺基酸在聚集過程中扮演的角色探討 15 1.6 尋找與IAPP離胺酸作用的抑制劑 18 1.7 實驗目的 21 第二章 實驗材料與方法 22 2.1 實驗材料 22 2.2 實驗方法 24 2.2.1 胜肽合成與純化 24 2.2.2 胜肽準備與配製 30 2.2.3 硫磺素T動力學分析(Thioflavin T assay) 30 2.2.4 穿透式電子顯微鏡(Transmission electron microscopy) 32 2.2.5 光誘導交聯反應(Photo-induced cross-linking of unmodified proteins) 34 2.2.6 凝膠電泳(Gel electrophoresis) 35 2.2.7 銀染法試驗(Silver staining) 38 2.2.8 圓偏光二色性光譜(Circular dichroism spectroscopy) 39 2.2.9 衰減式全反射傅立葉轉換紅外線光譜(Attenuated total reflection fourier- transform infrared spectroscopy) 41 2.2.10 染料滲漏試驗(Dye leakage) 43 第三章 實驗結果與討論 46 3.1 IAPP突變體設計、合成、純化與鑑定 46 3.2 IAPP與其突變體聚集程度比較 51 3.3 IAPP與其突變體聚集傾向比較 54 3.4 IAPP與其突變體纖維結構 56 3.5 IAPP與其突變體聚集過程二級結構變化比較 57 3.6 IAPP與其突變體對磷脂質囊胞的交互作用能力比較 62 3.7 抑制劑對IAPP突變體抑制效果減少 64 第四章 結論 73 主題二 探討胡椒鹼及其衍生物對胰島類澱粉蛋白聚集的影響 75 摘要 76 Abstract 77 第一章 緒論 78 1.1 常見影響IAPP聚集的小分子 78 1.2 加速類澱粉蛋白聚集減少寡聚體產生的細胞毒性 80 1.3 胡椒鹼之潛在生物活性效果 82 1.4 實驗目的 82 第二章 實驗材料與方法 83 2.1 實驗材料 83 2.2 實驗方法 84 2.2.1 胜肽合成與純化 84 2.2.2 胜肽準備與小分子原液配製 84 2.2.3 小分子紫外光-可見光吸收光譜及螢光光譜 84 2.2.4 硫磺素T動力學實驗(Thioflavin T assay) 85 第三章 實驗結果與討論 86 3.1 胡椒鹼衍生物設計與合成 86 3.2 胡椒鹼衍生物吸收光譜與放光光譜 88 3.3 胡椒鹼及衍生物對IAPP聚集影響 90 3.3.1 羧酸 90 3.3.2 雙鍵數量 90 3.3.3 苯環上取代基種類 91 3.3.4 苯環上甲氧基取代位置 93 3.3.5 雙鍵順反異構物 93 3.3.6 飽和鍵與不飽和鍵 94 3.3.7 兩個雙鍵置換成芳香環 94 第四章 結論 97 參考資料 99

    [1]Hazenberg, B.P.(2013). Amyloidosis: a clinical overview. Rheum Dis Clin North Am, 39(2), 323-45.
    [2]Chiti, F. and C.M. Dobson(2017). Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem, 86, 27-68.
    [3]Keating, D.J.(2008). Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem, 104(2), 298-305.
    [4]Manoharan, S., G.J. Guillemin, R.S. Abiramasundari, et al.(2016). The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: a mini review. Oxid Med Cell Longev, 2016, 8590578.
    [5]Irvine, G.B., O.M. El-Agnaf, G.M. Shankar, and D.M. Walsh(2008). Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Mol Med, 14(7-8), 451-464.
    [6]Goedert, M.(2015). Neurodegeneration. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled abeta, tau, and alpha-synuclein. Science, 349(6248), 1255555.
    [7]Roberts, R.F., R. Wade-Martins and J. Alegre-Abarrategui(2015). Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain. Brain, 138(Pt 6), 1642-1657.
    [8]Iwatsubo, T.(2003). Aggregation of α-synuclein in thepathogenesis of Parkinson’s disease. Journal of Neurology, 250(3), iii11-iii14.
    [9]Tomita, T.(2016). Apoptosis in pancreatic beta-islet cells in Type 2 diabetes. Bosn J Basic Med Sci, 16(3), 162-179.
    [10]Engel, M.F., L. Khemtemourian, C.C. Kleijer, et al.(2008). Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A, 105(16), 6033-6038.
    [11]Gupta, D. and J.L. Leahy(2014). Islet amyloid and type 2 diabetes: overproduction or inadequate clearance and detoxification? J Clin Invest, 124(8), 3292-3294.
    [12]Goldsbury, C., U. Baxa, M.N. Simon, et al.(2011). Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol, 173(1), 1-13.
    [13]Cao, P., L.H. Tu, A. Abedini, et al.(2012). Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. J Mol Biol, 421(2-3), 282-95.
    [14]Vadukul, D.M., Y.K. Al-Hilaly and L.C. Serpell(2019). Methods for structural analysis of amyloid fibrils in misfolding diseases. Methods Mol Biol, 1873, 109-122.
    [15]Li, D. and C. Liu(2020). Structural diversity of amyloid fibrils and advances in their structure determination. Biochemistry, 59(5), 639-646.
    [16]Moran, S.D. and M.T. Zanni(2014). How to get insight into amyloid structure and formation from infrared spectroscopy. J Phys Chem Lett, 5(11), 1984-1993.
    [17]Xu, S.(2009). Cross-beta-sheet structure in amyloid fiber formation. J Phys Chem B, 113(37), 12447-12455.
    [18]Biancalana, M. and S. Koide(2010). Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta, 1804(7), 1405-1412.
    [19]Pedersen, J.T. and N.H. Heegaard(2013). Analysis of protein aggregation in neurodegenerative disease. Anal Chem, 85(9), 4215-4227.
    [20]Arosio, P., T.P. Knowles and S. Linse(2015). On the lag phase in amyloid fibril formation. Phys Chem Chem Phys, 17(12), 7606-7618.
    [21]Xue, W.F., S.W. Homans and S.E. Radford(2008). Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A, 105(26), 8926-8931.
    [22]Opie, E.L.(1901). The relation oe diabetes mellitus to lesions of the pancreas. hyaline degeneration of the islands oe Langerhans. J Exp Med, 5(5), 527-540.
    [23]Hales, C.N. and D.J. Barker(1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 35(7), 595-601.
    [24]DeFronzo, R.A.(2004). Pathogenesis of type 2 diabetes mellitus. Med Clin North Am, 88(4), 787-835, ix.
    [25]Asthana, S., B. Mallick, A.T. Alexandrescu, and S. Jha(2018). IAPP in type II diabetes: basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. Biochim Biophys Acta Biomembr.
    [26]Westermark, P., A. Andersson and G.T. Westermark(2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev, 91(3), 795-826.
    [27]Ueberberg, S., M.A. Nauck, W. Uhl, et al.(2020). Islet amyloid in patients with diabetes due to exocrine pancreatic disorders, type 2 diabetes and non-diabetic patients. J Clin Endocrinol Metab.
    [28]Kahn, S.E., S. Andrikopoulos and C.B. Verchere(1999). Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 48(2), 241-253.
    [29]Cao, P., A. Abedini, H. Wang, et al.(2013). Islet amyloid polypeptide toxicity and membrane interactions. Proc Natl Acad Sci U S A, 110(48), 19279-19284.
    [30]Konarkowska, B., J.F. Aitken, J. Kistler, S. Zhang, and G.J. Cooper(2006). The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J, 273(15), 3614-3624.
    [31]Caillon, L., A.R. Hoffmann, A. Botz, and L. Khemtemourian(2016). Molecular structure, membrane interactions, and toxicity of the islet amyloid polypeptide in type 2 diabetes mellitus. J Diabetes Res, 2016, 5639875.
    [32]Khemtemourian, L., J.A. Killian, J.W. Hoppener, and M.F. Engel(2008). Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res, 2008, 421287.
    [33]Luca, S., W.M. Yau, R. Leapman, and R. Tycko(2007). Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry, 46(47), 13505-13522.
    [34]Dupuis, N.F., C. Wu, J.E. Shea, and M.T. Bowers(2009). Human islet amyloid polypeptide monomers form ordered beta-hairpins: a possible direct amyloidogenic precursor. J Am Chem Soc, 131(51), 18283-18292.
    [35]Patil, S.M., S. Xu, S.R. Sheftic, and A.T. Alexandrescu(2009). Dynamic alpha-helix structure of micelle-bound human amylin. J Biol Chem, 284(18), 11982-11991.
    [36]Nanga, R.P., J.R. Brender, S. Vivekanandan, and A. Ramamoorthy(2011). Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim Biophys Acta, 1808(10), 2337-2342.
    [37]Qi, R., Y. Luo, B. Ma, R. Nussinov, and G. Wei(2014). Conformational distribution and alpha-helix to beta-sheet transition of human amylin fragment dimer. Biomacromolecules, 15(1), 122-131.
    [38]Cao, P., P. Marek, H. Noor, et al.(2013). Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett, 587(8), 1106-1118.
    [39]Westermark, P., U. Engstrom, K.H. Johnson, G.T. Westermark, and C. Betsholtz(1990). Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A, 87(13), 5036-40.
    [40]Abedini, A. and D.P. Raleigh(2006). Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: is there a critical amyloidogenic domain in human IAPP? J Mol Biol, 355(2), 274-281.
    [41]Koo, B.W., J.A. Hebda and A.D. Miranker(2008). Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide. Protein Eng Des Sel, 21(3), 147-154.
    [42]Wiltzius, J.J., S.A. Sievers, M.R. Sawaya, and D. Eisenberg(2009). Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci, 18(7), 1521-1530.
    [43]De Carufel, C.A., N. Quittot, P.T. Nguyen, and S. Bourgault(2015). Delineating the role of helical intermediates in natively unfolded polypeptide amyloid assembly and cytotoxicity. Angew Chem Int Ed Engl, 54(48), 14383-14387.
    [44]Hoffmann, A.R.F., M.S. Saravanan, O. Lequin, J.A. Killian, and L. Khemtemourian(2018). A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. Biochim Biophys Acta Biomembr.
    [45]Godin, E., P.T. Nguyen, X. Zottig, and S. Bourgault(2019). Identification of a hinge residue controlling islet amyloid polypeptide self-assembly and cytotoxicity. J Biol Chem, 294(21), 8452-8463.
    [46]Tu, L.H. and D.P. Raleigh(2013). Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. Biochemistry, 52(2), 333-342.
    [47]Nguyen, P.T., X. Zottig, M. Sebastiao, and S. Bourgault(2017). Role of site-specific asparagine deamidation in islet amyloid polypeptide amyloidogenesis: key contributions of residues 14 and 21. Biochemistry, 56(29), 3808-3817.
    [48]Zhao, J., J. Wu, Z. Yang, et al.(2019). Nitration of hIAPP promotes its toxic oligomer formation and exacerbates its toxicity towards INS-1cells. Nitric Oxide, 87, 23-30.
    [49]Lopes, D.H., A. Attar, G. Nair, et al.(2015). Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem Biol, 10(6), 1555-1569.
    [50]Hsu, Y.H., Y.W. Chen, M.H. Wu, and L.H. Tu(2019). Protein glycation by glyoxal promotes amyloid formation by islet amyloid polypeptide. Biophys J, 116(12), 2304-2313.
    [51]Lee, K.H., D. Noh, A. Zhyvoloup, and D. Raleigh(2020). Analysis of Prairie Vole Amylin Reveals the Importance of the N-Terminus and Residue 22 in Amyloidogenicity and Cytotoxicity. Biochemistry, 59(4), 471-478.
    [52]Dhouafli, Z., K. Cuanalo-Contreras, E.A. Hayouni, et al.(2018). Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci, 75(19), 3521-3538.
    [53]Ngoungoure, V.L., J. Schluesener, P.F. Moundipa, and H. Schluesener(2015). Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res, 59(1), 8-20.
    [54]Andrich, K. and J. Bieschke(2015). The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. Adv Exp Med Biol, 863, 139-161.
    [55]Ishii, T., T. Mori, T. Tanaka, et al.(2008). Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. Free Radic Biol Med, 45(10), 1384-1394.
    [56]Cao, D., Y. Zhang, H. Zhang, L. Zhong, and X. Qian(2009). Systematic characterization of the covalent interactions between (-)-epigallocatechin gallate and peptides under physiological conditions by mass spectrometry. Rapid Commun Mass Spectrom, 23(8), 1147-1157.
    [57]Xu, Z.X., G.L. Ma, Q. Zhang, et al.(2017). Inhibitory mechanism of epigallocatechin gallate on fibrillation and aggregation of amidated human islet amyloid polypeptide. Chemphyschem, 18(12), 1611-1619.
    [58]Sato, M., K. Murakami, M. Uno, et al.(2013). Site-specific inhibitory mechanism for amyloid beta42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem, 288(32), 23212-23224.
    [59]Velander, P., L. Wu, W.K. Ray, R.F. Helm, and B. Xu(2016). Amylin amyloid inhibition by flavonoid baicalein: key roles of its vicinal dihydroxyl groups of the catechol moiety. Biochemistry, 55(31), 4255-4258.
    [60]Mochizuki, M., S. Tsuda, K. Tanimura, and Y. Nishiuchi(2015). Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org Lett, 17(9), 2202-2205.
    [61]Chen, Y.-T.(2019). Minimum acquisition of double mutation in human calcitonin enhances its resistance to fibrillization and its use as therapeutic polypeptides. National Taiwan Normal University.
    [62]Rahimi, F., P. Maiti and G. Bitan(2009). Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J Vis Exp(23).
    [63]Wei, Y., A. Thyparambil and R. Latour(2014). Protein helical structure determination using CD Spectroscopy for solutions with strong background absorbance from 190-230 nm. Biochimica et biophysica acta, 1844.
    [64]Micsonai, A., F. Wien, L. Kernya, et al.(2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A, 112(24), E3095-103.
    [65]Brender, J.R., S. Salamekh and A. Ramamoorthy(2012). Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res, 45(3), 454-462.
    [66]Cheng, B., X. Liu, H. Gong, et al.(2011). Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem, 59(24), 13147-13155.
    [67]Ren, B., Y. Liu, Y. Zhang, et al.(2018). Genistein: a dual inhibitor of both amyloid β and human islet amylin peptides. ACS Chemical Neuroscience, 9(5), 1215-1224.
    [68]Pithadia, A., J.R. Brender, C.A. Fierke, and A. Ramamoorthy(2016). Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res, 2016, 2046327.
    [69]Gao, M., K. Estel, J. Seeliger, et al.(2015). Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Phys Chem Chem Phys, 17(13), 8338-8348.
    [70]Bieschke, J., M. Herbst, T. Wiglenda, et al.(2011). Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat Chem Biol, 8(1), 93-101.
    [71]Gong, H., X. Zhang, B. Cheng, et al.(2013). Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes. PLoS One, 8(1), e54198.
    [72]Hassanpour, A., C.A. De Carufel, S. Bourgault, and P. Forgione(2014). Synthesis of 2,5-diaryl-substituted thiophenes as helical mimetics: towards the modulation of islet amyloid polypeptide (IAPP) amyloid fibril formation and cytotoxicity. Chem Eur J, 20(9), 2522-2528.
    [73]Pilkington, E.H., M. Lai, X. Ge, et al.(2017). Star polymers reduce islet amyloid polypeptide toxicity via accelerated amyloid aggregation. Biomacromolecules, 18(12), 4249-4260.
    [74]Derosa, G., P. Maffioli and A. Sahebkar(2016). Piperine and its role in chronic diseases. Adv Exp Med Biol, 928, 173-184.
    [75]Choi, S., Y. Choi, Y. Choi, et al.(2013). Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem, 141(4), 3627-3635.
    [76]Bhat, B.G. and N. Chandrasekhara(1987). Metabolic disposition of piperine in the rat. Toxicology, 44(1), 99-106.
    [77]Hammad, A.S., S. Ravindran, A. Khalil, and S. Munusamy(2017). Structure-activity relationship of piperine and its synthetic amide analogs for therapeutic potential to prevent experimentally induced ER stress in vitro. Cell Stress Chaperones, 22(3), 417-428.

    無法下載圖示 本全文未授權公開
    QR CODE