研究生: |
薛建宏 HSUEH, Chien-Hung |
---|---|
論文名稱: |
金屬/氧化鉿(HfO2)/氧化釩(VO2)/氧化鉿(HfO2)/Si 結構應用於MOSFET之電性研究 Electrical Characterization of Metal/HfO2/VO2/HfO2/Si Structures Applied to MOSFET |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 阮弼群 Juan, Pi-Chun |
口試委員: |
林成利
Lin, Cheng-Li 劉傳璽 Liu, Chuan-Hsi 阮弼群 Juan, Pi-Chun |
口試日期: | 2022/06/10 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 二氧化釩 、高功率脈衝磁控濺鍍技術 、電晶體 |
英文關鍵詞: | VO2, HIPIMS, Transistor |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201812 |
論文種類: | 學術論文 |
相關次數: | 點閱:91 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現代科技產品朝向輕、薄、功能性多以及多樣化結合的發展,使得電子產品的製造商對於半導體元件的要求變更加嚴格,因此對於電晶體的品質要求也隨之變高。本研究使用了高功率脈衝磁控濺鍍技術(HIPIMS)來製作鋁(Al)/二氧化鉿(HfO2)/二氧化釩(VO2)/二氧化鉿(HfO2)/Si之MIS結構,有別於傳統的直流磁控濺鍍技術,高功率脈衝磁控濺鍍技術能更有效率的製作薄膜。
本研究採以不同的VO2薄膜厚度(20 nm、40 nm、60 nm),以及不同的退火溫度(500 ºC、650 ºC、800 ºC)退火60秒,使用半導體分析儀量測電流-電壓 (I - V)和電容-電壓(C - V)特性,並分析不同厚度和退火溫度所造成的影響。最後,會進一步的量測電容-電壓(C - V)電特性量測進行介面陷阱電荷(Dit)的量測,探討不同的參數對於漏電流以及界面陷阱密度(Dit)的影響。
我們在各個退火溫度與薄膜厚度的關係中可以發現,當薄膜厚度在20 nm 的時候退火溫度越高,漏電流越大,而當薄膜厚度在40、60 nm時,退火溫度越高,漏電流反而更小,推測是材料內部的結晶重新排列消除了大部分的缺陷,而退火溫度太低還沒到達再結晶溫度,因此漏電流會隨著厚度增加。
進行了界面陷阱電荷密度(Dit)量測,我們在各個退火溫度與薄膜厚度的關係中可以發現與電性量測時相同的趨勢,在20 nm的時候退火溫度越高,陷阱越大,而當薄膜厚度在40、60 nm 時,退火溫度越高,陷阱反而更小,而在這之中比較出最好的數值是800 ºC的退火溫度,厚度40 nm的試片,會形成這樣的結果推測是因為厚度在40 nm 時有較好的薄膜反應並且有將缺陷以及應力消除。
Owing to the development of modern technology products towards light, thin, multi-functional and diversified combinations, manufacturers of electronic products have become more stringent on semiconductor components, and the quality requirements on transistors have also become higher and higher. In this study, HIPIMS was used to fabricate the Al/HfO2/VO2/HfO2/Si (MIS) structures. HIPIMS was different from the traditional DC magnetron sputtering technique. HIPIMS could make thin films more efficiently.
This study has used different VO2 film thicknesses (20 nm, 40 nm, 60 nm) and different annealing temperatures (500 ºC, 650 ºC, 800 ºC) for 60 seconds. This study used a semiconductor to measure the I - V and C - V characteristics, and also analyzed the effects of different thicknesses and annealing temperatures. At last, the C - V electrical characteristics were further analyzed by the Dit. And the influence of different parameters on the leakage current and Dit were discussed.
In the experiment, it could be found that when the film thickness was 20 nm, the higher the annealing temperature, the more the leakage current. And when the film thickness was 40 and 60 nm, the higher the annealing temperature, the less the leakage current, which was presumed to be the crystallization inside the material. The rearrangement of the film eliminated most of the defects, and the annealing temperature was too low to reach the recrystallization temperature, so the leakage current increased with thickness.
The interfacial trap charge density (Dit) measurement was carried out. The same trend as the electrical measurement was found in the experiment. At 20 nm, the higher the annealing temperature, the more traps. When the film thickness was 40 nm and 60 nm, the higher the annealing temperature, the fewer traps. Moreover, among these different thicknesses, the best value was found at the annealing temperature of 800 ºC, the thickness of the test piece was 40 nm. The reason of this result was guessed that 40 nm thickness would create better film response and removal of defects and stress.
[1] D. Stroobandt, "Interconnect research influenced," IEEE Solid-State Circuits Magazine, Vol. 2, pp. 21-27, 2010.
[2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心, 2015年台灣重要產業技術發展藍圖I, 工研院IEK, 2008.
[3] Z. Yang, C. Ko, S. Ramanathan, "Oxide electronics utilizing ultrafast metal-insulator transitions," Annual Review of Materials Research, Vol. 41, pp. 337-367, 2011.
[4] B. F. Griffing, S. P. Faile, J. M. Honig, "Evidence for one-dimensional spin order in V3O5," Physical Review B, Vol. 21, pp. 154-158, 1980.
[5] P. B. Fabritchnyi, M. I. Afanasov, A. A. Shvyriaev, G. Demazeau, I. A. Presniakov, "Interactions hyperfines pour les sondes atomiques Sn dans le volume et la surface de l'oxyde V2O3 de part et d'autre de la temperature de transition," Solid State Communications, Vol. 74, pp. 337-341, 1990.
[6] B. F. Griffing, S. A. Shivashankar, S. P. Faile, J. M. Honig, "Metal- insulator transition in V4O7: specific-heat measurements and interpretation," Physical Review B, Vol. 31, pp. 8143-8147, 1985.
[7] K. M. Park, S. Yi, S. Moon, S. Im, "Optimum oxygen concentration for the optoelectronic properties of IR sensitive VOx thin films," Optical Materials, Vol. 17, pp. 311-314, 2001.
[8] J. Haber, M. Witko, R. Tokarz, "Vanadium pentoxide I. Structures and properties," Applied Catalysis A: General, Vol. 157, pp. 3-22, 1997.
[9] N. Shoichi, P. H. Keesom, S. P. Faile, "Susceptibilities of the vanadium Magnéli phases VnO2n−1 at low temperature," Physical Review B, Vol. 20, pp. 2886-2892, 1979.
[10] 劉傳璽, 陳進來, 第三版, "半導體元件物理與製程-理論與實務," 五南文化出版社, 2008.
[11] F. J. Morin, "Oxides which show a metal-to-insulator transition at the Neel
temperature," Physical Review Letters, Vol. 3, pp. 34-36, 1959.
[12] C. Leroux, G. Nihoul, G. Tendeloo, "From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy," Physical review B, Vol. 57, pp. 5111-5121, 1998.
[13] 徐國彬, "以溶膠凝膠法備製非冷卻型紅外光感測薄膜V1-x-yWxSiyO2之光學及電性性質研究," 國立台北科技大學化學工程學系碩士論文, 2004.
[14] J. B. Goodenough, "The two components of the crystallographic transition in VO2," Journal of Solid State Chemistry, Vol. 3, pp. 490-500, 1971.
[15] S. Minomura, H. Nagasaki, "The effect of pressure on the metal-to-inslator transition in V2O4 and V2O3," Journal of the Physical Society of Japan, Vol. 19, pp. 131-132, 1964.
[16] J. F. D. Natale, P. J. Hood, A. B. Harker, "Formation and characterization. of grain ‐ oriented VO2 thin films," Journal of Applied Physics, Vol. 66, pp. 5844-5850, 1989.
[17] D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, S. Yoon, "Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition," Journal of the Korean Physical Society, Vol. 69, pp. 1787-1797, 2016.
[18] R. T. Kivaisi, M. Samiji, "Optical and electrical properties of vanadium dioxide films prepared under optimized RF sputtering conditions." Solar Energy Materials and Solar Cells, Vol. 57, pp. 141-152, 1999.
[19] S. Nikhil, V. T. Arun, A. Ashish, P. Hanjong, A. Ahmedullah, G. S. Darrell, K. G. Sumeet, E. Roman, D. Suman, "A steep-slope transistor based on abrupt electronic phase transition," Nature Communications, Vol. 6, pp. 1-6, 2015.
[20] M. Tazawa, P. Jin, T. Miki, K. Yoshimura, K. Igrashi, S. Tanemura, "IR properties of SiO deposited on V1− xWxO2 thermochromic films by vacuum evaporation," Thin Solid Films, Vol. 375, pp. 100-103, 2000.
[21] Y. Ningyi, J. Li, C. Lin, "Valence reduction process from sol–gel V2O5 to VO2 thin films," Applied Surface Science, Vol. 191, pp. 176-180, 2002.
[22] Y. Dachuan, X. Niankan, Z. Jingyu, Z. Xiulin, "Vanadium dioxide films with good electrical switching property," Journal of Physics D: Applied Physics, Vol. 29, pp. 1051-1057, 1996.
[23] C. B. Greenberg, "Undoped and doped VO2 films grown from VO (OC3H7)3," Thin Solid Films, Vol. 110, pp. 73-82, 1983.
[24] D. H. Kim, H. S. Kwok, "Pulsed laser deposition of VO2 thin films," Applied Physics Letters, Vol. 65, pp. 3188-3190, 1994.
[25] B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph, "Properties of pulsed laser deposited vanadium oxide thin film thermistor," Materials Science in Semiconductor Processing, Vol. 6, pp. 375-377, 2003.
[26] D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, S. Ramanathan, "Structure-functional property relationships in RF-sputtered vanadium dioxide thin films," Journal of Applied Physics, Vol. 102, pp. 113715-1 - 113715-7, 2007.
[27] J. Ma, G. Xu, L. Miao, M. Tazawa, S. Tanemura, "Thickness-dependent structural and optical properties of VO2 thin films," Japanese Journal of Applied Physics, Vol. 50, pp. 020215-1 - 020215-3, 2011.
[28] H. A. Wriedt, "The O-V (oxygen-vanadium) system," Journal of Phase Equilibria, Vol. 10, pp. 271-277, 1989.
[29] Y. M. Ding, D. Misra, "Oxide structure-dependent. interfacial layer defects of HfAlO/SiO2/Si stack analyzed by conductance method," Journal of Vacuum Science & Technology B, Vol. 33, pp. 021203-1 - 021203-8, 2015.
[30] B. E. Deal, M. Sklar, A. S. Grove, E. H. Snow, "Characteristics of the surface-state charge of thermally oxidized silicon," Journal of The Electrochemical Society, Vol. 114, pp. 266-274, 1967.
[31] V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities," Surface and Coatings Technology, Vol.122, pp. 290-293, 1999.
[32] C. H. Choi, K. H. Oh, J. S. Goo, Z. Yu, R. W. Dutton, "Direct tunneling current model for circuit simulation," IEDM Technical Digest, pp. 735-738, 1999.
[33] F. C. Chiu, S. K. Fan, K. C. Tai, J. Y. Lee, "Electrical characterization of tunnel insulator in metal insulator tunnel transistors fabricated by atomic force microscope," Applied Physics Letters, Vol. 87, pp. 243506-1- 243506-3,2005.
[34] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, R. Liu, " High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors," Journal of Applied Physics, Vol. 102, pp. 073706-1- 073706-5, 2007.
[35] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, L. W. Cheng, "Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics," Applied Physics Letters, Vol. 95, pp. 012103-1- 012103-1, 2009.
[36] A. P. Ehiasarian, R. New, W. D. Münz, L. Hultman, U. Helmersson, V. Kouznetsov, "Influence of high power densities on the composition of pulsed magnetron plasmas," Vacuum, Vol. 65, pp. 147-154, 2002.
[37] J. P. Alami, "Plasma characterization & thin film growth and analysis in highly ionized magnetron sputtering," Diss. Institutionen för Fysik, kemi och biologi, 2005.
[38] K. Sarakinos, J. Alami, S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, Vol. 204, pp. 1661-1684, 2010.
[39] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, Vol. 518, pp. 4087-4090, 2010.
[40] K. Sarakinos, J. Alami, S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, Vol. 204, pp. 1661-1684, 2010.
[41] 楊明輝, "脈衝磁控濺鍍介紹," 工業材料雜誌, 232卷, 91-98頁, 2006.
[42] H. Takikawa, H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films." IEEE Transactions on Plasma Science, Vol. 35, pp. 992-999, 2007.
[43] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2," Journal of Applied Physics, Vol. 112, pp. 013305-1 - 013305-11, 2012.
[44] D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, "Power supply with arc handling for high peak power magnetron sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 22, pp. 1415-1419, 2004.
[45] J. Alami, K. Sarakinos, F. Uslu, M. Wuttig, "On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering," Journal of Physics D: Applied Physics, Vol. 42, pp. 015304-1 - 015304-7, 2008.
4-7, 2008.