簡易檢索 / 詳目顯示

研究生: 張廷宇
Ting-Yu Chang
論文名稱: 利用貝索光束達到高景深的掃頻式光學同調斷層攝影術
Extended Focus Depth for Swept-Source Optical Coherence Tomography by Using Bessel Beam
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 51
中文關鍵詞: 景深貝索光束掃頻式光學同調斷層攝影術軸稜鏡
英文關鍵詞: Depth of field, Bessel beam, Swept source optical coherence tomography, Axicon
論文種類: 學術論文
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,我們利用了頂角為165度的軸稜鏡(Axicon lens)產生貝索光束,並結合掃頻式光學同調斷層顯微術來提升橫向解析度。根據我們實驗的結果,在景深1.29mm的範圍內我們量測到的橫向解析度光點大小為~5微米,其靈敏度約為~94dB。

    In this study, a swept source optical coherence tomography (SS-OCT) system that profits from the enhanced lateral resolution performance of Bessel beam illumination was developed. Using an axicon lens with a top angle of 165 degree, nearly constant lateral resolution of ~ 5 micro meter over a focusing depth of at least 1.29 mm is demonstrated with an invariant sensitivity of ~ 94 dB.

    第一章 緒論 1 1.1文獻回顧 1 1.1.1光學同調斷層顯微術(OCT) 1 1.1.2 掃頻式光學同調斷層攝影術(Swept Source OCT) 3 1.1.3 動態掃描 7 1.2研究動機與目的 9 1.3論文架構 14 第二章 理論背景 15 2.1 景深 15 2.2 光學同調斷層攝影術的空間解析度 16 2.2.1 縱向解析度 16 2.2.2 橫向解析度 18 2.3 貝索光束(Bessel beam) 21 2.4 軸稜鏡(Axicon) 24 第三章 實驗架構與理論 28 3.1 實驗架構 28 3.2 實驗元件與儀器 31 3.2.1 光源(Swept-Source) 31 3.2.2 Axicon規格 32 3.3 掃瞄系統 33 第四章 實驗結果與討論 36 4.1 資料分析 36 4.2 縱向解析度 39 4.3 橫向解析度 40 4.4 樣品量測 46 第五章 結論與未來展望 48 參考文獻 49

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W.Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography", Science, vol. 254, pp.1178-1181, 1991.
    [2] A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, “Optical coherence tomography – principles and applications”, Rep. Prog. Phys. 66, 239–303 (2003).
    [3] Kye-Sung Lee et al., “Fourier domain optical coherence tomography with an 800μm diameter Axicon lens for long-depth-range probing”, SPIE 6079-84 (2006).
    [4] Zhihua Ding, Hongwu Ren, Yonghua Zhao, J. Stuart Nelson, and Zhongping Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens” ,Vol. 27, No. 4, OPTICS LETTERS, February 15( 2002).
    [5] R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy”, OPTICS LETTERS, Vol. 31, No. 16, August 15(2006).
    [6] Kye-Sung Lee and Jannick P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range”, OPTICS LETTERS , Vol. 33, No. 15, August 1(2008).
    [7] Kye-Sung Lee1, Chuck Koehler, Eric G. Johnson, and Jannick P. Rolland , “Fourier domain optical coherence tomography with an 800μm diameter axicon lens for long-depth-range probing”, Proc. of SPIE Vol. 6079 607919-1(2006).
    [8] K. M. Tan, M. Mazilu,1 T. H. Chow, W. M. Lee,1 K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia1, “In-fiber common-path optical coherence tomography using a conical-tip fiber”, Vol. 17, No. 4, OPTICS EXPRESS 2375, 16 February(2009).
    [9] Chinn, S.R.; Swanson, E. A. & Fujimoto, J. E., “Optical coherence tomography using a frequency-tunable optical source”, Opt. Lett., 22, 340-342, (1997).
    [10] Dr. Yu Chen, Dr. Iwona Gorczynska, Dr. Robert Huber, Dr. Norihiko Nishizawa (Nagoya University, Japan), Dr. Kenji Taira, Dr. Maciej Wojtkowski, Alex Cable (Thorlabs, Inc.), Dr. James Jiang (Thorlabs, Inc.), Dr. Joseph Schmitt (LightLab Imaging), Desmond C. Adler, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Tony H. Ko, Jonathan Liu, Vivek J. Srinivasan, ”Laser Medicine and Biomedical Optical Imaging”, RLE Progress Report Chapter 12.

    [11] J. M. Schmitt and S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue”, OPTICS LETTERS, Vol. 23, No. 13, July 1, (1998).
    [12] Jon Holmes, Simon Hattersley, Nick Stone, Florian Bazant-Hegemark,and Hugh Barr, “Multi-channel Fourier Domain OCTsystem with superior lateral resolution for biomedical applications”, Proc. of SPIE Vol. 6847 68470O-1, (2008).
    [13] J. Durnin, J. J. Micely, Jr. J. H. Eberly, “Diffraction-free beam”, [J]. Phys. Rev. Lett., 58:1499-1501(1987).
    [14] F. Gori, G. Guattari, C. Padovani. “Bessle-Gauss beams”, [J]. Opt. commun., 64(6):491-495(1987).
    [15] A. F. Fercher, “Optical coherence tomography”, Journal of Biomedical Optics, vol. 1, pp. 157-176, (1996).
    [16] Boulnois J L 1986 Lasers Med. Sci. 1 47–66
    [17] J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications, vol. 142, pp. 203-207, (1997).
    [18] Anatol N. Khilo, Eugeny G. Katranji, and Anatol A. Ryzhevich. “Axicon-based Bessel resonator:analytical descriptio and experiment”, [J]. Applied opt. ,41(30):6375-6379(2002).
    [19] Zhiping Jiang, Qisheng Lu, and Zejin Liu, “Propagation of apertured Bessel beams”, [J].App Opt, 1995, 34(31): 7183- 7185 (1995).
    [20] Brittingham,J.N.Fous “Wave made in homogeneous Maxwell’s equation: transerve electric mode”,[J], J.Appl.Phys., 54: 1179 – 1189, (1983).
    [21] Zilokowski,R.W, “Exact solutions of the wave equation with complex source locations”, [J] J.Math.phys.,26:861-863, (1985).
    [22] J.Durnin, “Exact solutions for nondiffracting beams I.The scalar theory”,[J] J.Opt.Soc.Am.A,4:651-654, (1987).
    [23] A.Vasara, J.Turunen and A.T.Friberg, “Holographic generation of diffraction-free beams”, Appl.Opt.,27:3959-3962,(1988).
    [24] A.Vasara, J.Turunen and A.T.Friberg, “Realization of general nondiffrating beams with computer-generated holograms”, J.Opt.Soc.Am.A,6:1748-1757,(1989).
    [25] G.Scott and N.Mcardle “Efficient generation of nearly diffractive-free beam using an axicon”,[J] Opt.Eng. 992.31(12): 2640-2643.
    [26] C. L. Tsangaris, G. H. C. New and J. Rogel-Salazar “Unstable Bessel beam resonator”, Opt. Commun.,223:233-238,(2003).
    [27] J. Rogel-Salazar, G. H. C. New and S. Chávez-Cerda “Bessel–Gauss beam optical resonator”,Opt.Commun., 190:117-122, (2001).
    [28] A.J.Cox and D.C.Dibble, “Nondiffracting beam from a spatially filtered Fabry-Perot resonator”, J.Opt.Soc.Am.A., 282-286,(1992).
    [29] V. Pyragaite, A. Piskarskas, K. Regelskis, V. Smilgevicius, A. Stabinis and S. Mikalauskas “Parametric down-conversion of higher-order Bessel optical beams in quadratic nonlinear medium”, Opt. Commun.,240:191-200,(2004).
    [30] Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics”, Appl. Opt.,31:2708-2713,(1992).
    [31] D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt and K. Dholakia “Guiding a cold atomic beam along a co-propagating and oblique hollow light guide”, Opt. Commun., 214: 247-254,(2002).
    [32] Jianping Yin, Yifu Zhu and Yuzhu Wang “Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling”, Phys. Lett. A,248: 309-318,(1998).
    [33] Bingelyte V, Leach J,Courtial J et al. “Optical controlled three- dimensional rotation of microscopic objects”, Appl. Phys. Lett., 82:829-831,(2003).
    [34] Peter Muys and Edfje Vanclamme “Direct generation of Bessel beams”,[J] Appl.Opt. 41(30):6375-6379,(2002).
    [35] R.Leitgeb, C.Hitzenberger, and A.Fercher,“Performance of fourier domain vs. time domain optical coherence tomography”, Opt. Express 11(8), 889–894 (2003)
    [36] E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid”, Opt. Express 14(10), 4403–4411 (2006)

    無法下載圖示 本全文未授權公開
    QR CODE