研究生: |
郝婷 Hao, Ting |
---|---|
論文名稱: |
甲酸與乙酸在Ge(100)表面的吸附與熱分解反應 Adsorption and Thermal Decomposition of Formic Acid and Acetic Acid on Ge(100) |
指導教授: |
洪偉修
Hung, Wei-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 甲酸 、乙酸 、吸附 、熱分解 |
英文關鍵詞: | formic acid, acetic acid, adsorption, thermal decomposition |
論文種類: | 學術論文 |
相關次數: | 點閱:148 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用程溫脫附質譜(TPD)及X光光電子能譜(XPS)研究甲酸(HCOOH)及乙酸(CH3COOH)在鍺(100)表面的吸附及熱分解反應。
在105K時,曝露甲酸於鍺(100)表面,會同時產生未分解的甲酸分子、和斷氧氫鍵分解的甲酸鹽(單螯結構, monodentate)吸附於表面;依照曝露量多寡,在275K未分解的甲酸會脫附或分解,部份分解的甲酸鹽會再轉換成另一種最穩定的吸附態結構(雙螯結構, bidentate);當溫度升至470K時表面進行兩個競爭反應,為分解的甲酸鹽脫附或轉換成雙螯吸附態;約525K雙螯吸附態也開始脫附或生成CO2離去。因此甲酸在鍺(100)表面熱分解的產物為HCOOH、CO2和H2。
為了更近一步了解當碳鏈變長對羧酸分子吸附於鍺(100)表面機制的影響,進而去探討乙酸分子的熱分解過程,並與甲酸比較。發現兩者在鍺(100)表面的熱分解反應機制與溫度相似,但乙酸的熱分解產物只有CH3COOH本身的再結合脫附。此篇論文是針對上述化合物在鍺(100)表面的反應機制加以探討。
The adsorption and thermal reactions of formic acid (HCOOH) and acetic acid (CH3COOH) on Ge(100) surface were studied with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The desorption products of thermal reactions were monitored by TPD and the reaction intermediates were identified with XPS using synchrotron radiation.
At 105 K, HCOOH molecules either adsorb molecularly or dissociate to form surface formate for all durations of exposure. Chemisorbed HCOOH desorbs intact or dissociates to form surface formate (monodentate formate) on annealing to 275 K, whereas a portion of surface formates further transfers into a more stable configuration (bidentate formate). On annealing to 470 K, surface formates ether recombine with surface H to evolve HCOOH or transfer into bidentate formate by reacting with Ge adatoms. Finally, the bidentate formates undergo recombinative desorption or decomposition to desorb CO2. The products for thermal reaction of formic acid on Ge(100) are HCOOH, CO2, and H2.
To understand the influence of longer carbon chain to the mechanism, we investigated the thermal reaction of acetic acid (CH3COOH) on Ge(100). Acetic acid undergoes thermal reaction with similar mechanisms as formic acid, but proceeds exclusively recombinative desorption rather than formation of the other products. The detailed mechanisms of thermal reactions on Ge(100) are studied and discussed in this dissertation.
1. Kamata, Y., High-κ/Ge MOSFETs for future nanoelectronics. Mater. Today. 2008, 11 (1-2), 30-38.
2. Gupta, R.; Yoo, W. J.; Wang, Y. Q.; Tan, Z.; Samudra, G.; Lee, S.; Chan, D. S. H.; Loh, K. P.; Bera, L. K.; Balasubramanian, N.; Kwong, D. L., Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications. Appl. Phys. Lett. 2004, 84 (21), 4331-4333.
3. Lee, M. L.; Leitz, C. W.; Cheng, Z.; Pitera, A. J.; Langdo, T.; Currie, M. T.; Taraschi, G.; Fitzgerald, E. A.; Antoniadis, D. A., Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates. Appl. Phys. Lett. 2001, 79 (20), 3344-3346.
4. Chui, C. O.; Ramanathan, S.; Triplett, B. B.; McIntyre, P. C.; Saraswat, K. C., Germanium MOS capacitors incorporating ultrathin high-kappa gate dielectric. IEEE Electron Dev. Lett. 2002, 23 (8), 473-475.
5. Zandvliet, H. J. W., The Ge(001) surface. Phys. Rep. Rev. Sec. Phys. Lett. 2003, 388 (1), 1-40.
6. Duke, C. B., Semiconductor surface reconstruction: The structural chemistry of two-dimensional surface compounds. Chem. Rev. 1996, 96 (4), 1237-1259.
7. (a) Kevan, S. D., Surface states and reconstruction on Ge(00l). Phys. Rev. B 1985, 32 (4), 2344-2350; (b) Culbertson, R. J.; Kuk, Y.; Feldman, L. C., Subsurface strain in the Ge(001) and Ge(111) surfaces and comparison to silicon. Surf. Sci. 1986, 167 (1), 127-140.
8. Loscutoff, P. L.; Bent, S. F., Reactivity of the germanium surface: Chemical passivation and functionalization. Annu. Rev. Phys. Chem. 2006, 57, 467-495.
9. Prabhakaran, K.; Maeda, F.; Watanabe. Y.; Ogino, T. , Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces. Appl. Phys. Lett. 2000, 76 (16), 2244-2246.
10. (a) Weser, T.; Bogen, A.; Konrad, B.; Schnell, R. D.; Schug, C. A.; Moritz, W.; Steinmann, W., Chemisorption of sulfur on Ge(100). Surf. Sci. 1988, 201 (1-2), 245-256; (b) Weser, T.; Bogen, A.; Konrad, B.; Schnell, R. D.; Schug, C. A.; Steinmann, W., Photoemission surface core-level study of sulfur adsorption on Ge(100). 1987, 35 (15), 8184-8188.
11. (a) Boonstra, A. H.; Van Ruler, J., The adsorption of various gases on clean and oxidized Ge surfaces Surf. Sci. 1966, 4 (2), 141-149; (b) Van Bommel, A. J.; Meyer, F., LEED measurement of H2S and H2Se adsorption on germanium (111). Surf. Sci. 1967, 6 (3), 391-394.
12. Nelen, L. M.; Fuller, K.; Greenlief, C. M., Adsorption and decomposition of H2S on the Ge(100) surface. Appl. Surf. Sci. 1999, 150 (1-4), 65-72.
13. Anderson, G. W.; Hanf, M. C.; Norton, P. R.; Lu, Z. H.; Graham, M. J., The S-passivation of Ge(100)-(1×1). Appl. Phys. Lett. 1995, 66 (9), 1123-1125.
14. (a) Bodlaki, D.; Yamamoto, H.; Waldeck, D. H.; Borguet, E., Ambient stability of chemically passivated germanium interfaces. Surf. Sci. 2003, 543 (1-3), 63-74; (b) Hanrath, T.; Korgel, B. A., Chemical Surface Passivation of Ge Nanowires. J. Am. Chem. Soc. 2004, 126 (47), 15466-15472; (c) Lyman, P. F.; Sakata, O.; Marasco, D.L.; Lee, T.L.; Breneman, K.D.; Keane, D.T.; Bedzyk, M.J., Structure of a passivated Ge surface prepared from aqueous solution. Surf. Sci. 2000, 462 (1-3), L594-L598.
15. Cullen, G. W.; Amick, J. A.; Gerlich, D., The stabilization of germanium surfaces by ethylation. J. Electrochem. Soc. 1962, 109, 124-127.
16. Schnell, R. D.; Himpsel, F. J.; Bogen, A.; Rieger,D.; Steinmann, W., Surface core-level shifts for clean and halogen-covered Ge(100) and Ge(111). Phy. Rev. B 1985, 32 (12), 8052-8056.
17. Ikeda, K.; Imai, S.; Matsumura, M., Atomic layer etching of germanium. Appl. Surf. Sci. 1997, 112, 87-91.
18. Choi, K.; Buriak, J. M., Hydrogermylation of alkenes and alkynes on hydride-terminated Ge(100) surfaces. Langmuir 2000, 16, 7737-7741.
19. Buriak, J. M., Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 2002, 102 (5), 1271-1308.
20. Teplyakov, A. V.; Lal, P.; Noah, Y. A.; Bent, S. F., Evidence for a retro-Diels-Alder reaction on a single crystalline surface: Butadienes on Ge(100). J. Am. Chem. Soc. 1998, 120 (29), 7377-7378.
21. Teplyakov, A. V.; Kong, M. J.; Bent, S. F., Vibrational spectroscopic studies of Diels-Alder reactions with the Si(100)-2x1 surface as a dienophile. J. Am. Chem. Soc. 1997, 119 (45), 11100-11101.
22. Kim, H. J.; Cho, J. H., Two reaction pathways of acetic acid on the Si(001) surface: Density-functional calculations. Phys. Rev. B 2005, 72 (19).
23. Tanaka, S.; Onchi, M.; Nishijima, M., The adsorption and thermal decomposition of formic acid on Si(100) and Si(111) surfaces. J. Chem. Phys. 1989, 91 (4), 2712-2725.
24. http://www.nsrrc.org.tw/chinese/img/pdf/info.pdf.
25. Campagna, M.; Rosei, R., Photoemission and adsorption spectroscopy of solid and interfaces with synchrotron radiation, North-Holland. 1990.
26. Hahn, E., Methods of calculating the properties of electron lenses. Adv. Electron. El. Phys. 1989, 75, 233-328.
27. (a) Gasser, R. P. H., An Introduction to chemisorption and catalysis by metal. Oxford University Press 1985; (b) An Introduction to Surface Chemistry , http://www.chem.qmw.ac.uk/surfaces/scc/.
28. Huang, J. Y.; Huang, H. G.; Lin, K. Y.; Liu, Q. P.; Sun, Y. M.; Xu, G. Q., The structures of physisorbed and chemisorbed formic acid on Si(111)-7 x 7. Surf. Sci. 2004, 549 (3), 255-264.
29. Surnev, L.; Tikhov, M., Comparative study of hydrogen adsorption on Ge(100) and Ge(111) surfaces. Surf. Sci. 1984, 138, 40-50.
30. Lin, J. Y.; Wee, A. T. S.; Huan, A. C. H.; Tan, K. L., SIMS study of the formic acid adsorption on polycrystalline copper and CuCl(111) surfaces. Surf. Sci. 1993, 285 (1-2), 31-41.
31. Filler, M. A.; Van Deventer, J. A.; Keung, A. J.; Bent, S. F., Carboxylic acid chemistry at the Ge(100)-2 x 1 interface: Bidentate bridging structure formation on a semiconductor surface. J. Am. Chem. Soc. 2006, 128 (3), 770-779.
32. Hwang, E.; Kim, D. H.; Hwang, Y. J.; Kim, A.; Hong, S.; Kim, S., Bidentate structures of acetic acid on Ge(100): The role of carboxyl oxygen. J. Phys. Chem. C 2007, 111 (16), 5941-5945.
33. Kim, H. J.; Cho, J. H., Density-functional calculations of the adsorption and reaction of acetic acid on Ge(001). J. Phys. Chem. C 2008, 112 (17), 6947-6952.
34. Warschkow, O.; Belcher, D. R.; Radny, M. W.; Schofield, S. R.; Smith, P. V., Acetic acid on silicon (001): An exercise in chemical analogy. Phys. Rev. B 2011, 84 (15).
35. Shimomura, M.; Kawaguchi, T. K.; Fukuda, Y.; Murakami, K.; AlZahrani, A. Z.; Srivastava, G. P., Bidentate chemisorption of acetic acid on a Si(001)-(2X1) surface: Experimental and theoretical investigations. Phys. Rev. B 2009, 80 (16).