簡易檢索 / 詳目顯示

研究生: 唐松箖
Tang, Song-Lin
論文名稱: 相容於後段製程之雷射退火鐵電氧化鉿鋯數值模擬
Numerical Simulation of Laser-base Annealing Ferroelectric HfZrO2 for Back-End-of-Line (BEOL) Compatible Process
指導教授: 李敏鴻
Lee, Min-Hung
口試委員: 李敏鴻
Lee, Min-Hung
張書通
Chang, Shu-Tong
王哲麒
Wang, Jer-Chyi
廖書賢
Liao, Shu-Hsien
口試日期: 2022/08/04
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 模擬氧化鉿鋯鐵電記憶體後段製程雷射退火
英文關鍵詞: Simulation, HfZrO2 (HZO), Ferroelectric Memory (FeRAM), Back End of Line (BEOL), Laser Annealing
研究方法: 實驗設計法比較研究觀察研究現象分析內容分析法
DOI URL: http://doi.org/10.6345/NTNU202201154
論文種類: 學術論文
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將具有鐵電效應之氧化鉿鋯 (HZO) 的鐵電記憶體 (FeRAM),並採用BEOL (Back end of line) 後段製程與邏輯 IC 整合。為了得到其良好的鐵電記憶體殘餘極化量 (Remnant Polarization)、矯頑場 (Coercive field) 以及ID-VG 遲滯特性,透過退火使 HZO 薄膜結晶化是相當重要的步驟,由於採用 BEOL 後段製成,將無法以一般 RTA (Rapid Thermal Annealing) 進行退火,因為下層的邏輯 IC 無法承受 RTA 退火的高溫,所以選擇用雷射退火 (Laser Annealing) 的方式將 HZO 薄膜結晶化。由於實驗無法準確量測 HZO 薄膜在退火時的溫度分布,因此本實驗透過模擬 Nd: YAG 雷射退火使鐵電記憶體結晶化的過程,以及下層邏輯 IC 的在退火時的溫度狀況,並模擬不同結構與不同材料,探討熱在不同結構與不同材料中的傳遞與分布。

    The ferroelectric memory (FeRAM) of hafnium zirconium oxide (HZO) with ferroelectric effect is integrated with logic IC using BEOL (Back end of line) process. In order to obtain good remnant polarization, coercive field and ID-VG hysteresis characteristics of ferroelectric memory, crystallization of HZO film by annealing is a very important step. Due to the BEOL process, annealing by general RTA (Rapid Thermal Annealing) cannot be performed, because the underlying logic IC cannot withstand the high temperature of RTA annealing, so laser annealing is chosen to crystallize the HZO film. Since the experiment cannot accurately measure the temperature distribution of the HZO film during annealing, this experiment simulates the crystallization process of the ferroelectric memory annealing by Nd: YAG laser, and the temperature condition of the underlying logic IC during annealing, discuss the heat transfer and distribution in different structures and different materials.

    致謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 基本原理與文獻回顧 4 2.1 雷射 4 2.1.1 雷射基本元素組成 4 2.1.2 Nd: YAG 雷射 5 2.2 雷射退火 7 2.2.1 非晶矽薄膜雷射退火結晶化 7 2.3 鉿基氧化物及鐵電材料特性 10 2.4 鐵電隨機存取記憶體 12 2.5 BEOL 後段製程 14 2.6 熱傳方程式 15 2.7 文獻回顧 17 2.7.1 簡單二元 ZrO2 和 HfO2 中的鐵電性 17 2.7.2 用於BEOL之Si: HfO2 鐵電記憶體奈秒雷射退火 18 2.7.3 用脈衝雷射退火使鐵電 Hf0.5Zr0.5O2 薄膜結晶化 19 第三章 平面型結構之實驗與模擬 20 3.1 平面型氧化鉿鋯鐵電記憶體製程 20 3.2 雷射退火系統 21 3.2.1 雷射機台 21 3.2.2 雷射退火光路架構 23 3.3 實驗量測 24 3.4 數值模擬 25 第四章 非平面型結構之模擬 36 4.1 垂直型氧化鉿鋯鐵電記憶體截面模擬 36 4.2 3D 型氧化鉿鋯鐵電記憶體截面模擬 57 第五章 結論與未來展望 77 參考文獻 79

    [1] 黃哲彥, “半導體雷射式激發摻銣及鐿之固態雷:1028nm ~ 1123nm,” 國立交通大學電子物理研究所碩士論文, 2006.
    [2] 蘇國輝,“以細微結構與光學系統調變誘發側向結晶,” 國立交通大學電機資訊學院光電工程學所碩士論文, 2006.
    [3] S. V. Kalinin and D. A. Bonnell, “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces,” Phys. Rev. B, vol. 65, no. 12, p. 125408, Mar. 2002.
    [4] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, Aug. 2012.
    [5] E. Tokumitsu, R. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 160–162, Apr. 1997.
    [6] J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C. H. Ahn, and T. P. Ma, “Ferroelectric Field Effect Transistors for Memory Applications,” Adv. Mater., vol. 22, no. 26–27, pp. 2957–2961, Apr. 2010.
    [7] 林金翰, “對於不同溫度條件下的HfZrO與HfAlO鐵電記憶體電容之特性探討,” 國立交通大學電子工程學系電子研究所碩士論文, 2016.
    [8] R. J. Baker, “CMOS: circuit design, layout, and simulation,” 3rd ed., New Jersey: John Wiley & Sons, 2010, Ch. 7, pp. 199-208.
    [9] L. Grenouillet, T. Francois, J. Coignus, S. Kerdilès, N. Vaxelaire, C. Carabasse, F. Mehmood, S. Chevalliez, C. Pellissier, F. Triozon, F. Mazen, G. Rodriguez, T. Magis, V. Havel, S. Slesazeck, F. Gaillard, U. Schroeder, T. Mikolajick, and E. Nowak, “Nanosecond Laser Anneal (NLA) for Si-Implanted HfO2 Ferroelectric Memories Integrated in Back-End of Line (BEOL),” in 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, pp. 1–2, Jun. 2020.
    [10] N. Volodina, A. Dmitriyeva, A. Chouprik, E. Gatskevich, and A. Zenkevich, “Ferroelectric Hf0.5Zr0.5O2 Thin Films Crystallized by Pulsed Laser Annealing,” Physica Rapid Research Ltrs, vol. 15, no. 5, p. 2100082, May 2021.
    [11] https://ekspla.com/product/nl300-series-compact-high-pulse-energy-lasers/, 20180702.
    [12] E. A. Scott, J. T. Gaskins, S. W. King, and P. E. Hopkins, “Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon,” APL Materials, vol. 6, no. 5, p. 058302, May 2018.
    [13] J. Paterson, D. Singhal, D. Tainoff, J. Richard, and O. Bourgeois, “Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire,” Journal of Applied Physics, vol. 127, no. 24, p. 245105, Jun. 2020.
    [14] V. M. Glazov and A. S. Pashinkin, “The Thermophysical Properties (Heat Capacity and Thermal Expansion) of Single-Crystal Silicon,” High Temperature, vol. 39, no. 3, p. 7, 2001.
    [15] C. J. Glassbrenner and G. A. Slack, “Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point,” Phys. Rev., vol. 134, no. 4A, pp. A1058–A1069, May 1964.
    [16] M. A. Panzer, M. Shandalov, J. A. Rowlette, Y. Oshima, Y. W. Chen, P. C. McIntyre, and K. E. Goodson, “Thermal Properties of Ultrathin Hafnium Oxide Gate Dielectric Films,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1269–1271, Dec. 2009.
    [17] J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius, “Dielectric properties of TiCx , TiNx , VCx , and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy,” Phys. Rev. B, vol. 30, no. 3, pp. 1155–1163, Aug. 1984.
    [18] J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surface and Coatings Technology, vol. 201, no. 6, pp. 3530–3535, Dec. 2006.
    [19] D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Phys. Rev. B, vol. 5, no. 8, pp. 3017–3029, Apr. 1972.
    [20] W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals,” Journal of Physical and Chemical Reference Data, vol. 38, no. 4, pp. 1013–1092, Dec. 2009.
    [21] G. Vijaya, M. Muralidhar Singh, M. S. Krupashankara, and R. Kulkarni, “Effect of Argon Gas Flow Rate on the Optical and Mechanical Properties of Sputtered Tungsten Thin Film Coatings,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 149, p. 012075, Sep. 2016.
    [22] L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express, vol. 20, no. 14, p. 15734, Jul. 2012.
    [23] R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceramics International, vol. 42, no. 1, pp. 1177–1182, Jan. 2016.
    [24] M. F. Al-Kuhaili, “Optical properties of hafnium oxide thin films and their application in energy-efficient windows,” Optical Materials, vol. 27, no. 3, pp. 383–387, Dec. 2004.
    [25] D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B, vol. 27, no. 2, pp. 985–1009, Jan. 1983.
    [26] G. Karbasian, R. dos Reis, A. K. Yadav, A. J. Tan, C. Hu, and S. Salahuddin, “Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2,” Appl. Phys. Lett., vol. 111, no. 2, p. 022907, Jul. 2017.

    無法下載圖示 本全文未授權公開
    QR CODE