研究生: |
解榮航 Hsieh, Jung-Hang |
---|---|
論文名稱: |
以二噻富烯作為電子供體部分之染料敏化太陽能電池系列染料 Organic Dyes with Dithiafulvalene Donors for Dye-Sensitized Solar Cells |
指導教授: |
林建村
Lin, Jiann-T'Suen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 染料敏化太陽能電池 、二噻富烯 、有機染料 |
英文關鍵詞: | dye-sensitized solar cell, dithiafulvalene, organic dyes |
DOI URL: | https://doi.org/10.6345/NTNU202204481 |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們設計出一系列D-π-A 型式,可作為染料敏化太陽能電池(dye-sensitized solar cells (DSSCs) )光敏染料。染料分子是以dithafulvalene(DTF)片段作為染料敏化太陽能電池之光感染料之電子予體(electron donor),並引入8H-茚并-[2,1-b]-噻吩作為共軛片段之核心,並引入thiophene或bithiophene以及3-hexylthiophene於共軛片段,並嘗試引入不同長碳鏈於DTF片段。
利用到一系列有機合成反應,包括Stille Coupling, Grignard reaction, Vilsmeier–Haack reaction, knoevenagel condensation來成功合成出此一系列有機染料,後再以可見-紫外光光譜儀(UV-Vis absorption spectra),光致發光(Photoluminescence),循環伏安法(Cyclic voltammetry),來測量染料之吸光、放光波段以及最高電子填滿軌域 (HOMO), 最低電子未填滿軌域 (LUMO)等各種光物理性質,DTF系列染料在400−600 奈米波長範圍有良好的吸光效益,以DTF-1染料所製備之染料敏化太陽能電池,在加入CDCA後可增進20%左右效益,其光電轉換效益達5.53%。為N719標準染料的67%。
We have successfully developed a new series of D-π-A types organic dyes containing dithafulvalene(DTF) units as the electron donor, 8H-indeno[2,1-b]thiophen-8-one as the core of the conjugated spacer, and 2-cyanoacrylic as the acceptor and anchor. These dyes were used as the sensitizers for dye sensitized solar cell applications. Thiophene or bithiophene was also introduced to the spacer to tune the conjugation. Different alkyl chains were also incorporated at the DTF moiety.
Stille Coupling, Grignard reaction, Vilsmeier–Haack reaction, and Knoevenagel condensation were the key reactions used to construct the dye molecules. Electronic properties such as absorption and emission spectra, and electrochemical property such as cyclic voltammetry of the dyes were also investigated. The dyes have high molar extinction absorption in 400 to 600 nm region. The efficient of DSSC device based on DTF-1 sensitizer can be reached 4.48%. After adding CDCA as the co-adsorbent, the efficiency was further improved to 5.53%, reaching~67% of the standard cell fabricated from N719.
1. S. D. Wolf, A. Descoeudres, Z. C. Holman, C. Ballif, Green. 2012, 2, 7
2. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M Friedlmeier, M. Powalla, Rapid Res. Lett. 2015, 9, 28
3. F. Hurd, R. Livingston, J. Phys. Chem. 1940, 44, 865
4. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature. 1976, 261, 402
5. B. O. regan, M. Gratzel, Nature . 1991, 353, 737
6. A. O. Adeloye , P. A. Ajibade, Molecules. 2014, 19, 12421
7. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science. 2011, 334, 6056
8. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab, M. Hanaya, ChemComm. 2015, 51, 15894
9. B. O. Reagan , M. Gratzel . Nature. 1991, 353,737
10. M. K. Nazeruddin , A. Kay , I. Podicio , J. Am. Chem. Soc. 1993, 115, 6382
11. M. K. Nazeeruddin , F. D. Angelis , S. Fantacci , J. Am. Chem. Soc. 2005; 127:16835
12. S. S. Park, Y. S. Won, Y. C. Choi, Energy & Fuels. 2009, 23, 3732.
13. M. Ye , X. Wen , M. Wang,. Mater. Today. 2015, 18, 155
14. Z. Pan, K. Zhao, J. Wang, ACS Nano. 2013, 7, 5215
15. A. I. Kojima , K. Teshima , Y. Shirai, J. Am. Chem. Soc. 2009, 131, 6050
16. S. Bose, V. Soni, K. R. Genwa, International J. Sci. Res. Pub. 2015, 5, 1
17. A. M. Valdivia, E. G. Galindo, M. J. Ariza, Solar Energy. 2013, 91, 263
18. K. Guo, K. Yan, X. Lu, Y. Qiu, Z. Liu, J. Sun, F. Yan, W. Guo, S. Yang, Org. Lett. 2012, 14 , 2214
19. Z. Wan, C. Jia, Y. Duan, X. Chen, Y. Lin, Y. Shi, Org. Electronics. 2013, 14, 2132
20. Z. Wan, C. Jia, Y. Duan, X. Chen, Z. Lic, Y. Lin, RSC Adv. 2014,4, 34896
21. T. HLee, C. Y. Hsu , Y. Y. Liao, H. H. Chou, H. Hughes, J. T. Lin ,Chem Asian J. 2014, 7, 1933
22. G. Sorohhov , C. Yi , M. Grätzel , S. Decurtins, S. X. Liu, Beilstein J. Org. Chem. 2015, 11, 1052