研究生: |
呂幸紋 |
---|---|
論文名稱: |
設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子 Design and Synthesis of Ethynylanthracene and Ethynylpyrene Derivatives with Amide-functionalized Organogelators |
指導教授: |
孫世勝
Sun, Shih-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 148 |
中文關鍵詞: | 有機凝膠分子 、有機金屬凝膠分子 、自組裝 、蒽 、苾 |
英文關鍵詞: | Organogelators, Metallogelators, Self-assembly, Anthracene, Pyrene |
論文種類: | 學術論文 |
相關次數: | 點閱:265 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們成功合成出一系列有機與有機金屬凝膠,DU97、DU135、DU157和DU169,利用乙炔蒽和乙炔芘與本實驗室發展出易形成凝膠結構合成而得最終產物。這一系列化合物在不同有機溶劑中可以形成凝膠。超分子凝膠的形成主要透過凝膠分子的自組裝,藉由氫鍵作用力、π-π作用力以及C-H-π作用力,接著與溶劑分子間形成次級的作用力而形成凝膠。我們利用1H NMR、吸收光譜及放光光譜證實分子間作用力及光物理變化,分子間自組裝主要以J-type aggregation形式進行,經由SEM及TEM觀察其微觀組裝結構,皆呈現典型的纖維結構。在這一系列凝膠中,DU97具有較佳的凝膠能力,在環己烷中形成穩定的凝膠,臨界凝膠濃度為2.9 mg/mL。另外,含有兩價的鉑金屬之DU135和DU157,表現出特別的光物理性質,DU135除氧後同時具有雙重發光特性,分別在415 nm的螢光及655 nm的磷光。相對的,DU157則僅觀察到438 nm之螢光。然而,DU157在含氯的溶劑中會形成氧加成產物,探討其可能機制,推論可能經由自由基路徑產生單重態氧氣加成於蒽上之反應。
A series of organogelators and metallogelators, DU97, DU135, DU157, DU169 was designed and synthesized. These gelators are composed of ethynylanthrancene and ethynylpyrene derivatives with long-chain pyridine-2,6-dicarboxamide. These gelators have shown great ability to immobilize a variety of organic solvents to form gels. The formation of supramolecular gels is achieved from self-assembly of gelator molecules via cooperative hydrogen bonding, π-π stacking and C-H-π interactions followed by secondary interations with solvent molecules. The presence of aggregates was confirmed by variable-temperature 1H NMR and absorption/emission spectroscopy. The supramolecular aggregates in these organogels are considered to be the J-type aggregation. The xerogels studied by SEM and TEM revealed fiber-like morphologies. Among all gelators, DU97 exhibits the greatest ability to form stable gel in cyclohexane with a critical gelation concentration of 2.9 mg/mL. DU135 and DU157 containing Pt(II) metal centers exhibit unique photophysical properties. DU135 exhibits dual emission with fluorescence at 415 nm and strong phosphorescence at 655 nm. In contrast, DU157 does not show any detectable phosphorescence but only fluorescence at 438 nm. Oxygen addition product was identified for DU157 in chlorinated solvent under UV irradiation. The mechanism for the observed photochemistry likely involves singlet oxygen and proceeds with free-radical pathways.
1.Reinhoudt, D. N.; Crego-Calama, M. Science. 2002, 295, 2403.
2.Whitesides, G. M.; Grzybowski, B. Science. 2002, 295, 2418.
3.Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P.H. J. Chem. Rev. 2005, 105, 1491-1546.
4.Aida, T.; Meijer, E. W.; Stupp, S. I. Science. 2012, 335, 813-817.
5.Ajayaghosh, A.; Varghese, R.; Praveen, V. K.; Mahesh, S. Angew. Chem. Int. Ed. 2006, 45, 3261.
6.Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491.
7.Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644.
8.Graham, T. Phil. Trans. Roy. Soc. 1861, 151, 183.
9.Lloyd, D. J. The problem of gel structure, In Colloid Chemistry, Alexander, J.; ed. The Chemical Catalogue Company, New York, USA, 1926, 767-782.
10.Flory, J. P. Faraday Discuss. Chem. Soc. 1974, 57, 7.
11.Gelbart, W. M.; Ben-Shaul, A. J. Phys. Chem. 1996, 100, 13169.
12.John, G.; Shankar, B. V.; Jadhav, S. R.; Vemula, P. K. Langmuir. 2010, 26, 17843-17851.
13.Hamada, D.; Yanagihara, I.; Tsumoto, K. Trends Biotechnol. 2004, 22, 93-97.
14.Jeong, Y.; Hanabusa, K.; Masunaga, H.; Akiba, I.; Miyoshi, K.;Sakurai, S.; Sakurai, K. Langmuir. 2005, 21, 586-594.
15.Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.;Meijer, E. W. Science. 2006, 313, 80-83.
16.Zhu, G.; Dordick, J. S. Chem. Mater. 2006, 18, 5988-5995.
17.Dasgupta, D.; Thierry, A.; Rochas, C.; Ajayaghosh, A.; Guenet,J. M. Soft Matter. 2012, 8, 8714.
18.Babu, S. S.; Praveen, V. K.; Ajayaghosh. A. Chem. Rev. 2014, 114, 1973−2129.
19.Yu, G.; Yan, X.; Han, C.; Huang, F. Chem. Soc. Rev. 2013, 42, 6697-6722.
20.Zhang. Y.; Jiang. S. Org. Biomol. Chem., 2012, 10, 6973-6979.
21.Zhang. Y.; Liang. C.; Shang. H.; Ma. Y.; Jiang. S. J. Mater. Chem. C., 2013, 1, 4472-4480.
22.Jochem T. van Herpt, Marc C. A. Stuart, Browne. W. R.; Feringa. B. L. Langmuir., 2013, 29, 8763-8767.
23.Zhang, X.; Lu, R.; Jia, J.; Liu, X.; Xue, P.; Xu, D.; Zhou, H. Chem. Commun. 2010, 46 , 8419–8421.
24.Ajayagosh, A.; George, S. J. J. Am. Chem. Soc. 2001, 123, 5148.
25.Sivadas, A. P.; Saleesh Kumar, N. S.; Prabhu, D. D.; Varghese, S.; Krishna Prasad, S.; Shankar Rao, D. S.; Das, Suresh. J. Am. Chem. Soc. 2014, 136, 5416-5423.
26.Yao, C,; Lu, Q.; Wang, X.; Wang, F. J. Phys. Chem. B 2014, 118, 4661 – 4668.
27.George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489-497.
28.Becker, H.-D. Chem. Rev. 1993, 93, 145-172.
29.Terech, P.; Furman, I.; Weiss, R. G.; Bouas-Laurent, H.;Devergne, J.-P.; Ramassuel, R. Faraday Discuss., 1995, 101, 345.
30.Brotin, T.; Utermohlen, R.; Fages, F.; Bouas-Laurent, H.;Desvergne, J.-P. J. Chem. Soc., Chem. Commun., 1991, 416.
31.Terech, P.; Bouas-Laurent, H.; Devergne, J.-P. J. Colloid Interface Sci., 1995, 174, 258.
32. Olive, A. G. L.; Raffy, G.; Allouchi, H.; Le ́ ger, J. M.; Del Guerzo, A.; Desvergne, J.-P. Langmuir., 2009, 25, 8606.
33.Desvergne, J.-P.; Brotin, T.; Meerschaut, D.; Clavier, G.;Placin, F.; Pozzo, J.-L.; Bouas-Laurent, H. New. J. Chem., 2004, 28, 234-243.
34.Brotin, T.; Utermöhlen, R.; Fages, F.; Bouas-Laurent, H.; Desvergne, J. P. J. Chem. Soc., Chem. Commun., 1991, 416.
35.Terech, P.; Meerschaut, D.; Desvergne, J.-P.; Colomes, M.; Bouas-Laurent, H. J. Colloid Interface Sci., 2003, 261, 441.
36.Wang, C.; Zhang, D.; Wiang, J.; Zhu, D. Langmuir 2007, 23, 9195-9200.
37.Hu, J.; Xu, H.; Nguyen, M. H.; Yip, J. K. Inorg. Chem. 2009, 48, 9684–9692.
38.Kearns, D. R.; Merkel, P. B.; Nilsson, R. J. Am. Chem. Soc. 1972, 94, 7244-7253.
39.Rajamalli, P.; Prasad, E. Org. Lett. 2011, 13, 3714-3717.
40.Dawn, A.; Shiraki, T.; Ichikawa, H.; Takada, A.; Takahashi, Y.; Tsuchiya, Y.; Lien, L. T. N.; Shinkai, S. J. Am. Chem. Soc. 2012, 134, 2161-2171.
41.Xing, L. B.; Yang, B.;Wang, X. J.; Wang, J. J.; Chen, B.; Wu,Q.; Peng, H. X.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Langmuir 2013, 29, 2843−2848.
42.Bernhardt, S.; Kastler, M.; Enkelmann, V.; Baumgarten, M.; Müllen, K. Chem.
Eur. J. 2006, 12, 6117-6128.
43.Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K. Chem. Eur. J. 2006, 12, 824-831.
44.Maitra, U.; Potluri, V. K.; Sangeetha, N. M.; Babu, P.; Raju, A. R. Tetrahedron: Asymmetry. 2001, 12, 477.
45.Babu, P.; Sangeetha, N. M.; Vijaykumar, P.; Maitra, U.; Rissanen, K.; Raju, A. R. Chem. Eur. J. 2003, 9, 1922.
46.Das, R. K.; Kandanelli, R.; Linnanto, J.; Bose, K.; Maitra, U. Langmuir., 2010, 26, 16141.
47.Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.;Capelli, R.; Muccini, M.; Ziessel, R. J. Am. Chem. Soc., 2009, 131,18177-18185.
48.Mandal. D.; Kar. T.; Das. P. K. Chem. Eur. J., 2014, 20, 1349-1358.
49.Huang, C. B.; Chen, L. J.; Huang J.; Xu, L. RSC Adv., 2014, 4, 19538–19549.
50.Lu, W.; Chen,Y.; Roy, V. A. L.; Chui, S. S.-Y.; Che, C.-M. Angew. Chem. 2009, 121, 7757–7761.
51.Po C.; Tam, A. Y.-Y.; Wong, K. M.-C.; Yam, V. W.-W.; J. Am. Chem. Soc. 2011, 133, 12136–12143.
52.Mayoral, M. J.; Rest, C.; Stephanenko, V.; Schellheimer,J.; Albuqerque, R. Q. Fernandez, G. J. Am. Chem. Soc. 2013, 135, 2148–2151.
53.Lam, S. T.; Yam, V. W. Chem. Eur. J. 2010, 16, 11588.
54.Chang, K. C.; Lin, J. L.; Shen, Y. T.; Hung, C. Y.; Chen, C. Y.; Sun,S. S. Chem. Eur. J., 2012, 18, 1312 – 1321.
55.Kim. H.; Chang. J. Y. RSC Adv., 2013, 3, 1774-1780.
56.Praveen. V.K.; Ranjith. C.; Armaroli. N. Angew. Chem. Int. Ed., 2014, 53, 365- 368.
57.Xue,C.; Weng,, X.; Ge, J.-J.; Shen, Z.; Shen, H.; Graham, M. J.; Jeong, K.-U.; Huang, H.; Zhang, D.; Guo, M.; Harris, F. W.; Cheng, S. Z. D. Chem. Mater. 2004, 16, 1014–1025;
58.Shen, H.; Jeong,K.-U.; Graham, M. J.; Leng, S.; Zheng,J. X.; Huang, H.; Guo, M.; Harris, F. W.; Cheng, S. Z. D. Soft Matter, 2006, 2, 232–242.
59.Chen, M.; Wei, C; Tao, J; Wu, X.; Huang, N.; Zhang, G;. Li , L. Chem. Eur. J. 2014, 20, 2812–2818.
60.Ghosh, K.; Yang, H. B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y. R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
61.Ghosh, K.; Hu, J.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2009, 313, 6695.
62.Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958.
63.Tam, A. Y. Y.; Wong, K. M. C.; Yam, V. W. W. J. Am. Chem. Soc. 2009, 131, 6253.
64.Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J. P. Angew. Chem. Int. Ed. 2007, 46, 2659.
65.Cardolaccia,T.; Li, Y.; Schanze, K. S. J. Am. Chem. Soc. 2008, 130, 2535–2545.
66.Zhang, J.; Xu, X. D.; Chen, L. J.; Luo, Q.; Wu, N. W.; Wang, D. X.; Zhao, X. L.; Yang, H. B.; Organometallics 2011, 30, 4032–4038.
67.Chen, L. J.; Zhang, J.; He, J.; Xu, X. D.; Wu, N. W.; Wang, D. X.; Abliz, Z.; Yang, H. B. Organometallics 2011, 30, 5590–5594.
68.Xu, X. D.; Zhang, J.; Yu, D.; Chen, L.J.; Wang, D. X.; Yi, T.; Li, F.; Yang, H. B. Chem. Eur. J., 2012, 18, 16000 – 16013.
69.Li, Z. Y.; Xu, L.; Wang, C. H.; Zhao, X. L.; Yang, H. B. Chem. Commun., 2013, 49, 6194-6196.
70.Wang, W.; Yang, H. B. Chem. Commun., 2014, 50, 5171-5186.
71.Tian, Y. J.; Meijer, E. W.; Wang, F. Chem. Commun. 2013, 49, 9197–9199.
72.Lehn, J. M.; Mascal, M.; Decian, A.; Fischer, J. J. Chem. Soc., Chem. Commun. 1990, 479.
73.Haino. T,; Hirai, Y.; Ikeda. T.; Saito. H. Org. Biomol. Chem., 2013, 11, 4164-4170.
74.Xue, P.; Lu, R.; Zhang, P.; Jia, J.; Xu, Q.; Zhang, T.; Takafuji,M.; Ihara, H. Langmuir 2013, 29, 417–425.
75.Tsou, C. C.; Sun, S. S. Org. Lett. 2006, 8, 387-390.
76.Shen, Y. Ting.; Li, C. H.; Chang, K. C.; Chin, S. Y.; Lin, H. A.; Liu, Y. M.; Hung, C. Y.; Hsu, H. F.; Sun, S. S. Langmuir. 2009, 25(15), 8714–8722.
77.Xiao, Q.; Ranasinghe, R. T.; Tang, A. P. M.; Brown, T. Tetrahedron, 2007, 63, 3483.
78.Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213.
79.K. Nakamura, Bull. Chem. Soc. Jpn., 1982, 55, 2697-2705.
80.蔡孟學,碩士論文,中央大學化學研究所 (2013)。
81.何弘杰,碩士論文,中國文化大學化學系應用化學研究所 (2014)。